File size: 25,871 Bytes
60e3a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
from typing import Optional, Sequence, Any, Tuple, cast, Generator, Union, Dict, List
from chromadb.segment import MetadataReader
from chromadb.ingest import Consumer
from chromadb.config import System
from chromadb.types import RequestVersionContext, Segment, InclusionExclusionOperator
from chromadb.db.impl.sqlite import SqliteDB
from overrides import override
from chromadb.db.base import (
    Cursor,
    ParameterValue,
    get_sql,
)
from chromadb.telemetry.opentelemetry import (
    OpenTelemetryClient,
    OpenTelemetryGranularity,
    trace_method,
)
from chromadb.types import (
    Where,
    WhereDocument,
    MetadataEmbeddingRecord,
    LogRecord,
    SeqId,
    Operation,
    UpdateMetadata,
    LiteralValue,
    WhereOperator,
)
from uuid import UUID
from pypika import Table, Tables
from pypika.queries import QueryBuilder
import pypika.functions as fn
from pypika.terms import Criterion
from itertools import groupby
from functools import reduce
import sqlite3

import logging

logger = logging.getLogger(__name__)


class SqliteMetadataSegment(MetadataReader):
    _consumer: Consumer
    _db: SqliteDB
    _id: UUID
    _opentelemetry_client: OpenTelemetryClient
    _collection_id: Optional[UUID]
    _subscription: Optional[UUID] = None

    def __init__(self, system: System, segment: Segment):
        self._db = system.instance(SqliteDB)
        self._consumer = system.instance(Consumer)
        self._id = segment["id"]
        self._opentelemetry_client = system.require(OpenTelemetryClient)
        self._collection_id = segment["collection"]

    @trace_method("SqliteMetadataSegment.start", OpenTelemetryGranularity.ALL)
    @override
    def start(self) -> None:
        if self._collection_id:
            seq_id = self.max_seqid()
            self._subscription = self._consumer.subscribe(
                collection_id=self._collection_id,
                consume_fn=self._write_metadata,
                start=seq_id,
            )

    @trace_method("SqliteMetadataSegment.stop", OpenTelemetryGranularity.ALL)
    @override
    def stop(self) -> None:
        if self._subscription:
            self._consumer.unsubscribe(self._subscription)

    @trace_method("SqliteMetadataSegment.max_seqid", OpenTelemetryGranularity.ALL)
    @override
    def max_seqid(self) -> SeqId:
        t = Table("max_seq_id")
        q = (
            self._db.querybuilder()
            .from_(t)
            .select(t.seq_id)
            .where(t.segment_id == ParameterValue(self._db.uuid_to_db(self._id)))
        )
        sql, params = get_sql(q)
        with self._db.tx() as cur:
            result = cur.execute(sql, params).fetchone()

            if result is None:
                return self._consumer.min_seqid()
            else:
                return self._db.decode_seq_id(result[0])

    @trace_method("SqliteMetadataSegment.count", OpenTelemetryGranularity.ALL)
    @override
    def count(self, request_version_context: RequestVersionContext) -> int:
        embeddings_t = Table("embeddings")
        q = (
            self._db.querybuilder()
            .from_(embeddings_t)
            .where(
                embeddings_t.segment_id == ParameterValue(self._db.uuid_to_db(self._id))
            )
            .select(fn.Count(embeddings_t.id))
        )
        sql, params = get_sql(q)
        with self._db.tx() as cur:
            result = cur.execute(sql, params).fetchone()[0]
            return cast(int, result)

    @trace_method("SqliteMetadataSegment.get_metadata", OpenTelemetryGranularity.ALL)
    @override
    def get_metadata(
        self,
        request_version_context: RequestVersionContext,
        where: Optional[Where] = None,
        where_document: Optional[WhereDocument] = None,
        ids: Optional[Sequence[str]] = None,
        limit: Optional[int] = None,
        offset: Optional[int] = None,
        include_metadata: bool = True,
    ) -> Sequence[MetadataEmbeddingRecord]:
        """Query for embedding metadata."""
        embeddings_t, metadata_t, fulltext_t = Tables(
            "embeddings", "embedding_metadata", "embedding_fulltext_search"
        )

        limit = limit or 2**63 - 1
        offset = offset or 0

        if limit < 0:
            raise ValueError("Limit cannot be negative")

        select_clause = [
            embeddings_t.id,
            embeddings_t.embedding_id,
            embeddings_t.seq_id,
        ]
        if include_metadata:
            select_clause.extend(
                [
                    metadata_t.key,
                    metadata_t.string_value,
                    metadata_t.int_value,
                    metadata_t.float_value,
                    metadata_t.bool_value,
                ]
            )

        q = (
            (
                self._db.querybuilder()
                .from_(embeddings_t)
                .left_join(metadata_t)
                .on(embeddings_t.id == metadata_t.id)
            )
            .select(*select_clause)
            .orderby(embeddings_t.id)
        )

        # If there is a query that touches the metadata table, it uses
        # where and where_document filters, we treat this case seperately
        if where is not None or where_document is not None:
            metadata_q = (
                self._db.querybuilder()
                .from_(embeddings_t)
                .select(embeddings_t.id)
                .left_join(metadata_t)
                .on(embeddings_t.id == metadata_t.id)
                .orderby(embeddings_t.id)
                .where(
                    embeddings_t.segment_id
                    == ParameterValue(self._db.uuid_to_db(self._id))
                )
                .distinct()  # These are embedding ids
            )

            if where:
                metadata_q = metadata_q.where(
                    self._where_map_criterion(
                        metadata_q, where, metadata_t, embeddings_t
                    )
                )
            if where_document:
                metadata_q = metadata_q.where(
                    self._where_doc_criterion(
                        metadata_q, where_document, metadata_t, fulltext_t, embeddings_t
                    )
                )
            if ids is not None:
                metadata_q = metadata_q.where(
                    embeddings_t.embedding_id.isin(ParameterValue(ids))
                )

            metadata_q = metadata_q.limit(limit)
            metadata_q = metadata_q.offset(offset)

            q = q.where(embeddings_t.id.isin(metadata_q))
        else:
            # In the case where we don't use the metadata table
            # We have to apply limit/offset to embeddings and then join
            # with metadata
            embeddings_q = (
                self._db.querybuilder()
                .from_(embeddings_t)
                .select(embeddings_t.id)
                .where(
                    embeddings_t.segment_id
                    == ParameterValue(self._db.uuid_to_db(self._id))
                )
                .orderby(embeddings_t.id)
                .limit(limit)
                .offset(offset)
            )

            if ids is not None:
                embeddings_q = embeddings_q.where(
                    embeddings_t.embedding_id.isin(ParameterValue(ids))
                )

            q = q.where(embeddings_t.id.isin(embeddings_q))

        with self._db.tx() as cur:
            # Execute the query with the limit and offset already applied
            return list(self._records(cur, q, include_metadata))

    def _records(
        self, cur: Cursor, q: QueryBuilder, include_metadata: bool
    ) -> Generator[MetadataEmbeddingRecord, None, None]:
        """Given a cursor and a QueryBuilder, yield a generator of records. Assumes
        cursor returns rows in ID order."""

        sql, params = get_sql(q)
        cur.execute(sql, params)

        cur_iterator = iter(cur.fetchone, None)
        group_iterator = groupby(cur_iterator, lambda r: int(r[0]))

        for _, group in group_iterator:
            yield self._record(list(group), include_metadata)

    @trace_method("SqliteMetadataSegment._record", OpenTelemetryGranularity.ALL)
    def _record(
        self, rows: Sequence[Tuple[Any, ...]], include_metadata: bool
    ) -> MetadataEmbeddingRecord:
        """Given a list of DB rows with the same ID, construct a
        MetadataEmbeddingRecord"""
        _, embedding_id, seq_id = rows[0][:3]
        if not include_metadata:
            return MetadataEmbeddingRecord(id=embedding_id, metadata=None)

        metadata = {}
        for row in rows:
            key, string_value, int_value, float_value, bool_value = row[3:]
            if string_value is not None:
                metadata[key] = string_value
            elif int_value is not None:
                metadata[key] = int_value
            elif float_value is not None:
                metadata[key] = float_value
            elif bool_value is not None:
                if bool_value == 1:
                    metadata[key] = True
                else:
                    metadata[key] = False

        return MetadataEmbeddingRecord(
            id=embedding_id,
            metadata=metadata or None,
        )

    @trace_method("SqliteMetadataSegment._insert_record", OpenTelemetryGranularity.ALL)
    def _insert_record(self, cur: Cursor, record: LogRecord, upsert: bool) -> None:
        """Add or update a single EmbeddingRecord into the DB"""

        t = Table("embeddings")
        q = (
            self._db.querybuilder()
            .into(t)
            .columns(t.segment_id, t.embedding_id, t.seq_id)
            .where(t.segment_id == ParameterValue(self._db.uuid_to_db(self._id)))
            .where(t.embedding_id == ParameterValue(record["record"]["id"]))
        ).insert(
            ParameterValue(self._db.uuid_to_db(self._id)),
            ParameterValue(record["record"]["id"]),
            ParameterValue(self._db.encode_seq_id(record["log_offset"])),
        )
        sql, params = get_sql(q)
        sql = sql + "RETURNING id"
        try:
            id = cur.execute(sql, params).fetchone()[0]
        except sqlite3.IntegrityError:
            # Can't use INSERT OR REPLACE here because it changes the primary key.
            if upsert:
                return self._update_record(cur, record)
            else:
                logger.warning(
                    f"Insert of existing embedding ID: {record['record']['id']}"
                )
                # We are trying to add for a record that already exists. Fail the call.
                # We don't throw an exception since this is in principal an async path
                return

        if record["record"]["metadata"]:
            self._update_metadata(cur, id, record["record"]["metadata"])

    @trace_method(
        "SqliteMetadataSegment._update_metadata", OpenTelemetryGranularity.ALL
    )
    def _update_metadata(self, cur: Cursor, id: int, metadata: UpdateMetadata) -> None:
        """Update the metadata for a single EmbeddingRecord"""
        t = Table("embedding_metadata")
        to_delete = [k for k, v in metadata.items() if v is None]
        if to_delete:
            q = (
                self._db.querybuilder()
                .from_(t)
                .where(t.id == ParameterValue(id))
                .where(t.key.isin(ParameterValue(to_delete)))
                .delete()
            )
            sql, params = get_sql(q)
            cur.execute(sql, params)

        self._insert_metadata(cur, id, metadata)

    @trace_method(
        "SqliteMetadataSegment._insert_metadata", OpenTelemetryGranularity.ALL
    )
    def _insert_metadata(self, cur: Cursor, id: int, metadata: UpdateMetadata) -> None:
        """Insert or update each metadata row for a single embedding record"""
        t = Table("embedding_metadata")
        q = (
            self._db.querybuilder()
            .into(t)
            .columns(
                t.id,
                t.key,
                t.string_value,
                t.int_value,
                t.float_value,
                t.bool_value,
            )
        )
        for key, value in metadata.items():
            if isinstance(value, str):
                q = q.insert(
                    ParameterValue(id),
                    ParameterValue(key),
                    ParameterValue(value),
                    None,
                    None,
                    None,
                )
            # isinstance(True, int) evaluates to True, so we need to check for bools separately
            elif isinstance(value, bool):
                q = q.insert(
                    ParameterValue(id),
                    ParameterValue(key),
                    None,
                    None,
                    None,
                    ParameterValue(value),
                )
            elif isinstance(value, int):
                q = q.insert(
                    ParameterValue(id),
                    ParameterValue(key),
                    None,
                    ParameterValue(value),
                    None,
                    None,
                )
            elif isinstance(value, float):
                q = q.insert(
                    ParameterValue(id),
                    ParameterValue(key),
                    None,
                    None,
                    ParameterValue(value),
                    None,
                )

        sql, params = get_sql(q)
        sql = sql.replace("INSERT", "INSERT OR REPLACE")
        if sql:
            cur.execute(sql, params)

        if "chroma:document" in metadata:
            t = Table("embedding_fulltext_search")

            def insert_into_fulltext_search() -> None:
                q = (
                    self._db.querybuilder()
                    .into(t)
                    .columns(t.rowid, t.string_value)
                    .insert(
                        ParameterValue(id),
                        ParameterValue(metadata["chroma:document"]),
                    )
                )
                sql, params = get_sql(q)
                cur.execute(sql, params)

            try:
                insert_into_fulltext_search()
            except sqlite3.IntegrityError:
                q = (
                    self._db.querybuilder()
                    .from_(t)
                    .where(t.rowid == ParameterValue(id))
                    .delete()
                )
                sql, params = get_sql(q)
                cur.execute(sql, params)
                insert_into_fulltext_search()

    @trace_method("SqliteMetadataSegment._delete_record", OpenTelemetryGranularity.ALL)
    def _delete_record(self, cur: Cursor, record: LogRecord) -> None:
        """Delete a single EmbeddingRecord from the DB"""
        t = Table("embeddings")
        fts_t = Table("embedding_fulltext_search")
        q = (
            self._db.querybuilder()
            .from_(t)
            .where(t.segment_id == ParameterValue(self._db.uuid_to_db(self._id)))
            .where(t.embedding_id == ParameterValue(record["record"]["id"]))
            .delete()
        )
        q_fts = (
            self._db.querybuilder()
            .from_(fts_t)
            .delete()
            .where(
                fts_t.rowid.isin(
                    self._db.querybuilder()
                    .from_(t)
                    .select(t.id)
                    .where(
                        t.segment_id == ParameterValue(self._db.uuid_to_db(self._id))
                    )
                    .where(t.embedding_id == ParameterValue(record["record"]["id"]))
                )
            )
        )
        cur.execute(*get_sql(q_fts))
        sql, params = get_sql(q)
        sql = sql + " RETURNING id"
        result = cur.execute(sql, params).fetchone()
        if result is None:
            logger.warning(
                f"Delete of nonexisting embedding ID: {record['record']['id']}"
            )
        else:
            id = result[0]

            # Manually delete metadata; cannot use cascade because
            # that triggers on replace
            metadata_t = Table("embedding_metadata")

            q = (
                self._db.querybuilder()
                .from_(metadata_t)
                .where(metadata_t.id == ParameterValue(id))
                .delete()
            )
            sql, params = get_sql(q)
            cur.execute(sql, params)

    @trace_method("SqliteMetadataSegment._update_record", OpenTelemetryGranularity.ALL)
    def _update_record(self, cur: Cursor, record: LogRecord) -> None:
        """Update a single EmbeddingRecord in the DB"""
        t = Table("embeddings")
        q = (
            self._db.querybuilder()
            .update(t)
            .set(t.seq_id, ParameterValue(self._db.encode_seq_id(record["log_offset"])))
            .where(t.segment_id == ParameterValue(self._db.uuid_to_db(self._id)))
            .where(t.embedding_id == ParameterValue(record["record"]["id"]))
        )
        sql, params = get_sql(q)
        sql = sql + " RETURNING id"
        result = cur.execute(sql, params).fetchone()
        if result is None:
            logger.warning(
                f"Update of nonexisting embedding ID: {record['record']['id']}"
            )
        else:
            id = result[0]
            if record["record"]["metadata"]:
                self._update_metadata(cur, id, record["record"]["metadata"])

    @trace_method("SqliteMetadataSegment._write_metadata", OpenTelemetryGranularity.ALL)
    def _write_metadata(self, records: Sequence[LogRecord]) -> None:
        """Write embedding metadata to the database. Care should be taken to ensure
        records are append-only (that is, that seq-ids should increase monotonically)"""
        with self._db.tx() as cur:
            for record in records:
                if record["record"]["operation"] == Operation.ADD:
                    self._insert_record(cur, record, False)
                elif record["record"]["operation"] == Operation.UPSERT:
                    self._insert_record(cur, record, True)
                elif record["record"]["operation"] == Operation.DELETE:
                    self._delete_record(cur, record)
                elif record["record"]["operation"] == Operation.UPDATE:
                    self._update_record(cur, record)

            q = (
                self._db.querybuilder()
                .into(Table("max_seq_id"))
                .columns("segment_id", "seq_id")
                .insert(
                    ParameterValue(self._db.uuid_to_db(self._id)),
                    ParameterValue(self._db.encode_seq_id(record["log_offset"])),
                )
            )
            sql, params = get_sql(q)
            sql = sql.replace("INSERT", "INSERT OR REPLACE")
            cur.execute(sql, params)

    @trace_method(
        "SqliteMetadataSegment._where_map_criterion", OpenTelemetryGranularity.ALL
    )
    def _where_map_criterion(
        self, q: QueryBuilder, where: Where, metadata_t: Table, embeddings_t: Table
    ) -> Criterion:
        clause: List[Criterion] = []
        for k, v in where.items():
            if k == "$and":
                criteria = [
                    self._where_map_criterion(q, w, metadata_t, embeddings_t)
                    for w in cast(Sequence[Where], v)
                ]
                clause.append(reduce(lambda x, y: x & y, criteria))
            elif k == "$or":
                criteria = [
                    self._where_map_criterion(q, w, metadata_t, embeddings_t)
                    for w in cast(Sequence[Where], v)
                ]
                clause.append(reduce(lambda x, y: x | y, criteria))
            else:
                expr = cast(Union[LiteralValue, Dict[WhereOperator, LiteralValue]], v)
                clause.append(_where_clause(k, expr, q, metadata_t, embeddings_t))
        return reduce(lambda x, y: x & y, clause)

    @trace_method(
        "SqliteMetadataSegment._where_doc_criterion", OpenTelemetryGranularity.ALL
    )
    def _where_doc_criterion(
        self,
        q: QueryBuilder,
        where: WhereDocument,
        metadata_t: Table,
        fulltext_t: Table,
        embeddings_t: Table,
    ) -> Criterion:
        for k, v in where.items():
            if k == "$and":
                criteria = [
                    self._where_doc_criterion(
                        q, w, metadata_t, fulltext_t, embeddings_t
                    )
                    for w in cast(Sequence[WhereDocument], v)
                ]
                return reduce(lambda x, y: x & y, criteria)
            elif k == "$or":
                criteria = [
                    self._where_doc_criterion(
                        q, w, metadata_t, fulltext_t, embeddings_t
                    )
                    for w in cast(Sequence[WhereDocument], v)
                ]
                return reduce(lambda x, y: x | y, criteria)
            elif k in ("$contains", "$not_contains"):
                v = cast(str, v)
                search_term = f"%{v}%"

                sq = (
                    self._db.querybuilder()
                    .from_(fulltext_t)
                    .select(fulltext_t.rowid)
                    .where(fulltext_t.string_value.like(ParameterValue(search_term)))
                )
                return (
                    embeddings_t.id.isin(sq)
                    if k == "$contains"
                    else embeddings_t.id.notin(sq)
                )
            else:
                raise ValueError(f"Unknown where_doc operator {k}")
        raise ValueError("Empty where_doc")

    @trace_method("SqliteMetadataSegment.delete", OpenTelemetryGranularity.ALL)
    @override
    def delete(self) -> None:
        t = Table("embeddings")
        t1 = Table("embedding_metadata")
        t2 = Table("embedding_fulltext_search")
        q0 = (
            self._db.querybuilder()
            .from_(t1)
            .delete()
            .where(
                t1.id.isin(
                    self._db.querybuilder()
                    .from_(t)
                    .select(t.id)
                    .where(
                        t.segment_id == ParameterValue(self._db.uuid_to_db(self._id))
                    )
                )
            )
        )
        q = (
            self._db.querybuilder()
            .from_(t)
            .delete()
            .where(
                t.id.isin(
                    self._db.querybuilder()
                    .from_(t)
                    .select(t.id)
                    .where(
                        t.segment_id == ParameterValue(self._db.uuid_to_db(self._id))
                    )
                )
            )
        )
        q_fts = (
            self._db.querybuilder()
            .from_(t2)
            .delete()
            .where(
                t2.rowid.isin(
                    self._db.querybuilder()
                    .from_(t)
                    .select(t.id)
                    .where(
                        t.segment_id == ParameterValue(self._db.uuid_to_db(self._id))
                    )
                )
            )
        )
        with self._db.tx() as cur:
            cur.execute(*get_sql(q_fts))
            cur.execute(*get_sql(q0))
            cur.execute(*get_sql(q))


def _where_clause(
    key: str,
    expr: Union[
        LiteralValue,
        Dict[WhereOperator, LiteralValue],
        Dict[InclusionExclusionOperator, List[LiteralValue]],
    ],
    metadata_q: QueryBuilder,
    metadata_t: Table,
    embeddings_t: Table,
) -> Criterion:
    """Given a field name, an expression, and a table, construct a Pypika Criterion"""

    # Literal value case
    if isinstance(expr, (str, int, float, bool)):
        return _where_clause(
            key,
            {cast(WhereOperator, "$eq"): expr},
            metadata_q,
            metadata_t,
            embeddings_t,
        )

    # Operator dict case
    operator, value = next(iter(expr.items()))
    return _value_criterion(key, value, operator, metadata_q, metadata_t, embeddings_t)


def _value_criterion(
    key: str,
    value: Union[LiteralValue, List[LiteralValue]],
    op: Union[WhereOperator, InclusionExclusionOperator],
    metadata_q: QueryBuilder,
    metadata_t: Table,
    embeddings_t: Table,
) -> Criterion:
    """Creates the filter for a single operator"""

    def is_numeric(obj: object) -> bool:
        return (not isinstance(obj, bool)) and isinstance(obj, (int, float))

    sub_q = metadata_q.where(metadata_t.key == ParameterValue(key))
    p_val = ParameterValue(value)

    if is_numeric(value) or (isinstance(value, list) and is_numeric(value[0])):
        int_col, float_col = metadata_t.int_value, metadata_t.float_value
        if op in ("$eq", "$ne"):
            expr = (int_col == p_val) | (float_col == p_val)
        elif op == "$gt":
            expr = (int_col > p_val) | (float_col > p_val)
        elif op == "$gte":
            expr = (int_col >= p_val) | (float_col >= p_val)
        elif op == "$lt":
            expr = (int_col < p_val) | (float_col < p_val)
        elif op == "$lte":
            expr = (int_col <= p_val) | (float_col <= p_val)
        else:
            expr = int_col.isin(p_val) | float_col.isin(p_val)
    else:
        if isinstance(value, bool) or (
            isinstance(value, list) and isinstance(value[0], bool)
        ):
            col = metadata_t.bool_value
        else:
            col = metadata_t.string_value
        if op in ("$eq", "$ne"):
            expr = col == p_val
        else:
            expr = col.isin(p_val)

    if op in ("$ne", "$nin"):
        return embeddings_t.id.notin(sub_q.where(expr))
    else:
        return embeddings_t.id.isin(sub_q.where(expr))