Spaces:
Build error
Build error
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
import numpy as np | |
import pandas as pd | |
import pyarrow as pa | |
from . import common | |
from .common import KILOBYTE, MEGABYTE | |
def generate_chunks(total_size, nchunks, ncols, dtype=np.dtype('int64')): | |
rowsize = total_size // nchunks // ncols | |
assert rowsize % dtype.itemsize == 0 | |
def make_column(col, chunk): | |
return np.frombuffer(common.get_random_bytes( | |
rowsize, seed=col + 997 * chunk)).view(dtype) | |
return [pd.DataFrame({ | |
'c' + str(col): make_column(col, chunk) | |
for col in range(ncols)}) | |
for chunk in range(nchunks)] | |
class StreamReader(object): | |
""" | |
Benchmark in-memory streaming to a Pandas dataframe. | |
""" | |
total_size = 64 * MEGABYTE | |
ncols = 8 | |
chunk_sizes = [16 * KILOBYTE, 256 * KILOBYTE, 8 * MEGABYTE] | |
param_names = ['chunk_size'] | |
params = [chunk_sizes] | |
def setup(self, chunk_size): | |
# Note we're careful to stream different chunks instead of | |
# streaming N times the same chunk, so that we avoid operating | |
# entirely out of L1/L2. | |
chunks = generate_chunks(self.total_size, | |
nchunks=self.total_size // chunk_size, | |
ncols=self.ncols) | |
batches = [pa.RecordBatch.from_pandas(df) | |
for df in chunks] | |
schema = batches[0].schema | |
sink = pa.BufferOutputStream() | |
stream_writer = pa.RecordBatchStreamWriter(sink, schema) | |
for batch in batches: | |
stream_writer.write_batch(batch) | |
self.source = sink.getvalue() | |
def time_read_to_dataframe(self, *args): | |
reader = pa.RecordBatchStreamReader(self.source) | |
table = reader.read_all() | |
df = table.to_pandas() # noqa | |