himanshud2611's picture
Upload folder using huggingface_hub
60e3a80 verified
from typing import TYPE_CHECKING, Optional, Union
import numpy as np
from chromadb.api.models.CollectionCommon import CollectionCommon
from chromadb.api.types import (
URI,
CollectionMetadata,
Embedding,
PyEmbedding,
Include,
Metadata,
Document,
Image,
Where,
IDs,
GetResult,
QueryResult,
ID,
OneOrMany,
WhereDocument,
)
import logging
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from chromadb.api import ServerAPI # noqa: F401
class Collection(CollectionCommon["ServerAPI"]):
def count(self) -> int:
"""The total number of embeddings added to the database
Returns:
int: The total number of embeddings added to the database
"""
return self._client._count(collection_id=self.id)
def add(
self,
ids: OneOrMany[ID],
embeddings: Optional[ # type: ignore[type-arg]
Union[
OneOrMany[Embedding],
OneOrMany[PyEmbedding],
]
] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None,
images: Optional[OneOrMany[Image]] = None,
uris: Optional[OneOrMany[URI]] = None,
) -> None:
"""Add embeddings to the data store.
Args:
ids: The ids of the embeddings you wish to add
embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
documents: The documents to associate with the embeddings. Optional.
images: The images to associate with the embeddings. Optional.
uris: The uris of the images to associate with the embeddings. Optional.
Returns:
None
Raises:
ValueError: If you don't provide either embeddings or documents
ValueError: If the length of ids, embeddings, metadatas, or documents don't match
ValueError: If you don't provide an embedding function and don't provide embeddings
ValueError: If you provide both embeddings and documents
ValueError: If you provide an id that already exists
"""
(
ids,
embeddings,
metadatas,
documents,
uris,
) = self._validate_and_prepare_embedding_set(
ids, embeddings, metadatas, documents, images, uris
)
self._client._add(ids, self.id, embeddings, metadatas, documents, uris)
def get(
self,
ids: Optional[OneOrMany[ID]] = None,
where: Optional[Where] = None,
limit: Optional[int] = None,
offset: Optional[int] = None,
where_document: Optional[WhereDocument] = None,
include: Include = ["metadatas", "documents"],
) -> GetResult:
"""Get embeddings and their associate data from the data store. If no ids or where filter is provided returns
all embeddings up to limit starting at offset.
Args:
ids: The ids of the embeddings to get. Optional.
where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
limit: The number of documents to return. Optional.
offset: The offset to start returning results from. Useful for paging results with limit. Optional.
where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional.
include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional.
Returns:
GetResult: A GetResult object containing the results.
"""
(
valid_ids,
valid_where,
valid_where_document,
valid_include,
) = self._validate_and_prepare_get_request(ids, where, where_document, include)
get_results = self._client._get(
self.id,
valid_ids,
valid_where,
None,
limit,
offset,
where_document=valid_where_document,
include=valid_include,
)
return self._transform_get_response(get_results, include)
def peek(self, limit: int = 10) -> GetResult:
"""Get the first few results in the database up to limit
Args:
limit: The number of results to return.
Returns:
GetResult: A GetResult object containing the results.
"""
return self._transform_peek_response(self._client._peek(self.id, limit))
def query(
self,
query_embeddings: Optional[ # type: ignore[type-arg]
Union[
OneOrMany[Embedding],
OneOrMany[PyEmbedding],
]
] = None,
query_texts: Optional[OneOrMany[Document]] = None,
query_images: Optional[OneOrMany[Image]] = None,
query_uris: Optional[OneOrMany[URI]] = None,
n_results: int = 10,
where: Optional[Where] = None,
where_document: Optional[WhereDocument] = None,
include: Include = ["metadatas", "documents", "distances"],
) -> QueryResult:
"""Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.
Args:
query_embeddings: The embeddings to get the closes neighbors of. Optional.
query_texts: The document texts to get the closes neighbors of. Optional.
query_images: The images to get the closes neighbors of. Optional.
query_uris: The URIs to be used with data loader. Optional.
n_results: The number of neighbors to return for each query_embedding or query_texts. Optional.
where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional.
include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional.
Returns:
QueryResult: A QueryResult object containing the results.
Raises:
ValueError: If you don't provide either query_embeddings, query_texts, or query_images
ValueError: If you provide both query_embeddings and query_texts
ValueError: If you provide both query_embeddings and query_images
ValueError: If you provide both query_texts and query_images
"""
(
valid_query_embeddings,
valid_n_results,
valid_where,
valid_where_document,
) = self._validate_and_prepare_query_request(
query_embeddings,
query_texts,
query_images,
query_uris,
n_results,
where,
where_document,
include,
)
query_results = self._client._query(
collection_id=self.id,
query_embeddings=valid_query_embeddings,
n_results=valid_n_results,
where=valid_where,
where_document=valid_where_document,
include=include,
)
return self._transform_query_response(query_results, include)
def modify(
self, name: Optional[str] = None, metadata: Optional[CollectionMetadata] = None
) -> None:
"""Modify the collection name or metadata
Args:
name: The updated name for the collection. Optional.
metadata: The updated metadata for the collection. Optional.
Returns:
None
"""
self._validate_modify_request(metadata)
# Note there is a race condition here where the metadata can be updated
# but another thread sees the cached local metadata.
# TODO: fixme
self._client._modify(id=self.id, new_name=name, new_metadata=metadata)
self._update_model_after_modify_success(name, metadata)
def update(
self,
ids: OneOrMany[ID],
embeddings: Optional[ # type: ignore[type-arg]
Union[
OneOrMany[Embedding],
OneOrMany[np.ndarray],
]
] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None,
images: Optional[OneOrMany[Image]] = None,
uris: Optional[OneOrMany[URI]] = None,
) -> None:
"""Update the embeddings, metadatas or documents for provided ids.
Args:
ids: The ids of the embeddings to update
embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
documents: The documents to associate with the embeddings. Optional.
images: The images to associate with the embeddings. Optional.
Returns:
None
"""
(
ids,
embeddings,
metadatas,
documents,
uris,
) = self._validate_and_prepare_update_request(
ids, embeddings, metadatas, documents, images, uris
)
self._client._update(self.id, ids, embeddings, metadatas, documents, uris)
def upsert(
self,
ids: OneOrMany[ID],
embeddings: Optional[ # type: ignore[type-arg]
Union[
OneOrMany[Embedding],
OneOrMany[PyEmbedding],
]
] = None,
metadatas: Optional[OneOrMany[Metadata]] = None,
documents: Optional[OneOrMany[Document]] = None,
images: Optional[OneOrMany[Image]] = None,
uris: Optional[OneOrMany[URI]] = None,
) -> None:
"""Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.
Args:
ids: The ids of the embeddings to update
embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
documents: The documents to associate with the embeddings. Optional.
Returns:
None
"""
(
ids,
embeddings,
metadatas,
documents,
uris,
) = self._validate_and_prepare_upsert_request(
ids, embeddings, metadatas, documents, images, uris
)
self._client._upsert(
collection_id=self.id,
ids=ids,
embeddings=embeddings,
metadatas=metadatas,
documents=documents,
uris=uris,
)
def delete(
self,
ids: Optional[IDs] = None,
where: Optional[Where] = None,
where_document: Optional[WhereDocument] = None,
) -> None:
"""Delete the embeddings based on ids and/or a where filter
Args:
ids: The ids of the embeddings to delete
where: A Where type dict used to filter the delection by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}]}}`. Optional.
where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{$contains: {"text": "hello"}}`. Optional.
Returns:
None
Raises:
ValueError: If you don't provide either ids, where, or where_document
"""
(ids, where, where_document) = self._validate_and_prepare_delete_request(
ids, where, where_document
)
self._client._delete(self.id, ids, where, where_document)