Spaces:
Build error
Build error
from typing import ( | |
TYPE_CHECKING, | |
Dict, | |
Generic, | |
Optional, | |
Tuple, | |
Any, | |
TypeVar, | |
Union, | |
cast, | |
) | |
import numpy as np | |
from uuid import UUID | |
import chromadb.utils.embedding_functions as ef | |
from chromadb.api.types import ( | |
URI, | |
CollectionMetadata, | |
DataLoader, | |
Embedding, | |
Embeddings, | |
PyEmbedding, | |
Embeddable, | |
GetResult, | |
Include, | |
Loadable, | |
Metadata, | |
Metadatas, | |
Document, | |
Documents, | |
Image, | |
Images, | |
QueryResult, | |
URIs, | |
IDs, | |
EmbeddingFunction, | |
ID, | |
OneOrMany, | |
maybe_cast_one_to_many_ids, | |
maybe_cast_one_to_many_embedding, | |
maybe_cast_one_to_many_metadata, | |
maybe_cast_one_to_many_document, | |
maybe_cast_one_to_many_image, | |
maybe_cast_one_to_many_uri, | |
validate_ids, | |
validate_include, | |
validate_metadata, | |
validate_metadatas, | |
validate_embeddings, | |
validate_embedding_function, | |
validate_n_results, | |
validate_where, | |
validate_where_document, | |
) | |
# TODO: We should rename the types in chromadb.types to be Models where | |
# appropriate. This will help to distinguish between manipulation objects | |
# which are essentially API views. And the actual data models which are | |
# stored / retrieved / transmitted. | |
from chromadb.types import Collection as CollectionModel, Where, WhereDocument | |
import logging | |
logger = logging.getLogger(__name__) | |
if TYPE_CHECKING: | |
from chromadb.api import ServerAPI, AsyncServerAPI | |
ClientT = TypeVar("ClientT", "ServerAPI", "AsyncServerAPI") | |
class CollectionCommon(Generic[ClientT]): | |
_model: CollectionModel | |
_client: ClientT | |
_embedding_function: Optional[EmbeddingFunction[Embeddable]] | |
_data_loader: Optional[DataLoader[Loadable]] | |
def __init__( | |
self, | |
client: ClientT, | |
model: CollectionModel, | |
embedding_function: Optional[ | |
EmbeddingFunction[Embeddable] | |
] = ef.DefaultEmbeddingFunction(), # type: ignore | |
data_loader: Optional[DataLoader[Loadable]] = None, | |
): | |
"""Initializes a new instance of the Collection class.""" | |
self._client = client | |
self._model = model | |
# Check to make sure the embedding function has the right signature, as defined by the EmbeddingFunction protocol | |
if embedding_function is not None: | |
validate_embedding_function(embedding_function) | |
self._embedding_function = embedding_function | |
self._data_loader = data_loader | |
# Expose the model properties as read-only properties on the Collection class | |
def id(self) -> UUID: | |
return self._model.id | |
def name(self) -> str: | |
return self._model.name | |
def configuration_json(self) -> Dict[str, Any]: | |
return self._model.configuration_json | |
def metadata(self) -> CollectionMetadata: | |
return cast(CollectionMetadata, self._model.metadata) | |
def tenant(self) -> str: | |
return self._model.tenant | |
def database(self) -> str: | |
return self._model.database | |
def __eq__(self, other: object) -> bool: | |
if not isinstance(other, CollectionCommon): | |
return False | |
id_match = self.id == other.id | |
name_match = self.name == other.name | |
configuration_match = self.configuration_json == other.configuration_json | |
metadata_match = self.metadata == other.metadata | |
tenant_match = self.tenant == other.tenant | |
database_match = self.database == other.database | |
embedding_function_match = self._embedding_function == other._embedding_function | |
data_loader_match = self._data_loader == other._data_loader | |
return ( | |
id_match | |
and name_match | |
and configuration_match | |
and metadata_match | |
and tenant_match | |
and database_match | |
and embedding_function_match | |
and data_loader_match | |
) | |
def __repr__(self) -> str: | |
return f"Collection(id={self.id}, name={self.name})" | |
def get_model(self) -> CollectionModel: | |
return self._model | |
def _validate_embedding_set( | |
self, | |
ids: OneOrMany[ID], | |
embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[PyEmbedding], | |
] | |
], | |
metadatas: Optional[OneOrMany[Metadata]], | |
documents: Optional[OneOrMany[Document]], | |
images: Optional[OneOrMany[Image]] = None, | |
uris: Optional[OneOrMany[URI]] = None, | |
require_embeddings_or_data: bool = True, | |
) -> Tuple[ | |
IDs, | |
Optional[Embeddings], | |
Optional[Metadatas], | |
Optional[Documents], | |
Optional[Images], | |
Optional[URIs], | |
]: | |
valid_ids = validate_ids(maybe_cast_one_to_many_ids(ids)) | |
valid_embeddings = ( | |
validate_embeddings( | |
self._normalize_embeddings(maybe_cast_one_to_many_embedding(embeddings)) | |
) | |
if embeddings is not None | |
else None | |
) | |
valid_metadatas = ( | |
validate_metadatas(maybe_cast_one_to_many_metadata(metadatas)) | |
if metadatas is not None | |
else None | |
) | |
valid_documents = ( | |
maybe_cast_one_to_many_document(documents) | |
if documents is not None | |
else None | |
) | |
valid_images = ( | |
maybe_cast_one_to_many_image(images) if images is not None else None | |
) | |
valid_uris = maybe_cast_one_to_many_uri(uris) if uris is not None else None | |
# Check that one of embeddings or ducuments or images is provided | |
if require_embeddings_or_data: | |
if ( | |
valid_embeddings is None | |
and valid_documents is None | |
and valid_images is None | |
and valid_uris is None | |
): | |
raise ValueError( | |
"You must provide embeddings, documents, images, or uris." | |
) | |
# Only one of documents or images can be provided | |
if valid_documents is not None and valid_images is not None: | |
raise ValueError("You can only provide documents or images, not both.") | |
# Check that, if they're provided, the lengths of the arrays match the length of ids | |
if valid_embeddings is not None and len(valid_embeddings) != len(valid_ids): | |
raise ValueError( | |
f"Number of embeddings {len(valid_embeddings)} must match number of ids {len(valid_ids)}" | |
) | |
if valid_metadatas is not None and len(valid_metadatas) != len(valid_ids): | |
raise ValueError( | |
f"Number of metadatas {len(valid_metadatas)} must match number of ids {len(valid_ids)}" | |
) | |
if valid_documents is not None and len(valid_documents) != len(valid_ids): | |
raise ValueError( | |
f"Number of documents {len(valid_documents)} must match number of ids {len(valid_ids)}" | |
) | |
if valid_images is not None and len(valid_images) != len(valid_ids): | |
raise ValueError( | |
f"Number of images {len(valid_images)} must match number of ids {len(valid_ids)}" | |
) | |
if valid_uris is not None and len(valid_uris) != len(valid_ids): | |
raise ValueError( | |
f"Number of uris {len(valid_uris)} must match number of ids {len(valid_ids)}" | |
) | |
return ( | |
valid_ids, | |
valid_embeddings, | |
valid_metadatas, | |
valid_documents, | |
valid_images, | |
valid_uris, | |
) | |
def _validate_and_prepare_embedding_set( | |
self, | |
ids: OneOrMany[ID], | |
embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[PyEmbedding], | |
] | |
], | |
metadatas: Optional[OneOrMany[Metadata]], | |
documents: Optional[OneOrMany[Document]], | |
images: Optional[OneOrMany[Image]], | |
uris: Optional[OneOrMany[URI]], | |
) -> Tuple[ | |
IDs, | |
Embeddings, | |
Optional[Metadatas], | |
Optional[Documents], | |
Optional[URIs], | |
]: | |
( | |
ids, | |
embeddings, | |
metadatas, | |
documents, | |
images, | |
uris, | |
) = self._validate_embedding_set( | |
ids, embeddings, metadatas, documents, images, uris | |
) | |
# We need to compute the embeddings if they're not provided | |
if embeddings is None: | |
# At this point, we know that one of documents or images are provided from the validation above | |
if documents is not None: | |
embeddings = self._embed(input=documents) | |
elif images is not None: | |
embeddings = self._embed(input=images) | |
else: | |
if uris is None: | |
raise ValueError( | |
"You must provide either embeddings, documents, images, or uris." | |
) | |
if self._data_loader is None: | |
raise ValueError( | |
"You must set a data loader on the collection if loading from URIs." | |
) | |
embeddings = self._embed(self._data_loader(uris)) | |
return ids, embeddings, metadatas, documents, uris | |
def _validate_and_prepare_get_request( | |
self, | |
ids: Optional[OneOrMany[ID]], | |
where: Optional[Where], | |
where_document: Optional[WhereDocument], | |
include: Include, | |
) -> Tuple[Optional[IDs], Optional[Where], Optional[WhereDocument], Include,]: | |
valid_where = validate_where(where) if where else None | |
valid_where_document = ( | |
validate_where_document(where_document) if where_document else None | |
) | |
valid_ids = validate_ids(maybe_cast_one_to_many_ids(ids)) if ids else None | |
valid_include = validate_include(include, allow_distances=False) | |
if "data" in include and self._data_loader is None: | |
raise ValueError( | |
"You must set a data loader on the collection if loading from URIs." | |
) | |
# We need to include uris in the result from the API to load datas | |
if "data" in include and "uris" not in include: | |
valid_include.append("uris") # type: ignore[arg-type] | |
return valid_ids, valid_where, valid_where_document, valid_include | |
def _transform_peek_response(self, response: GetResult) -> GetResult: | |
if response["embeddings"] is not None: | |
response["embeddings"] = np.array(response["embeddings"]) | |
return response | |
def _transform_get_response( | |
self, response: GetResult, include: Include | |
) -> GetResult: | |
if ( | |
"data" in include | |
and self._data_loader is not None | |
and response["uris"] is not None | |
): | |
response["data"] = self._data_loader(response["uris"]) | |
if "embeddings" in include: | |
response["embeddings"] = np.array(response["embeddings"]) | |
# Remove URIs from the result if they weren't requested | |
if "uris" not in include: | |
response["uris"] = None | |
return response | |
def _validate_and_prepare_query_request( | |
self, | |
query_embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[PyEmbedding], | |
] | |
], | |
query_texts: Optional[OneOrMany[Document]], | |
query_images: Optional[OneOrMany[Image]], | |
query_uris: Optional[OneOrMany[URI]], | |
n_results: int, | |
where: Optional[Where], | |
where_document: Optional[WhereDocument], | |
include: Include, | |
) -> Tuple[Embeddings, int, Where, WhereDocument,]: | |
# Users must provide only one of query_embeddings, query_texts, query_images, or query_uris | |
if not ( | |
(query_embeddings is not None) | |
^ (query_texts is not None) | |
^ (query_images is not None) | |
^ (query_uris is not None) | |
): | |
raise ValueError( | |
"You must provide one of query_embeddings, query_texts, query_images, or query_uris." | |
) | |
valid_where = validate_where(where) if where else {} | |
valid_where_document = ( | |
validate_where_document(where_document) if where_document else {} | |
) | |
valid_query_embeddings = ( | |
validate_embeddings( | |
self._normalize_embeddings( | |
maybe_cast_one_to_many_embedding(query_embeddings) | |
) | |
) | |
if query_embeddings is not None | |
else None | |
) | |
valid_query_texts = ( | |
maybe_cast_one_to_many_document(query_texts) | |
if query_texts is not None | |
else None | |
) | |
valid_query_images = ( | |
maybe_cast_one_to_many_image(query_images) | |
if query_images is not None | |
else None | |
) | |
valid_query_uris = ( | |
maybe_cast_one_to_many_uri(query_uris) if query_uris is not None else None | |
) | |
valid_include = validate_include(include, allow_distances=True) | |
valid_n_results = validate_n_results(n_results) | |
# If query_embeddings are not provided, we need to compute them from the inputs | |
if valid_query_embeddings is None: | |
if query_texts is not None: | |
valid_query_embeddings = self._embed(input=valid_query_texts) | |
elif query_images is not None: | |
valid_query_embeddings = self._embed(input=valid_query_images) | |
else: | |
if valid_query_uris is None: | |
raise ValueError( | |
"You must provide either query_embeddings, query_texts, query_images, or query_uris." | |
) | |
if self._data_loader is None: | |
raise ValueError( | |
"You must set a data loader on the collection if loading from URIs." | |
) | |
valid_query_embeddings = self._embed( | |
self._data_loader(valid_query_uris) | |
) | |
if "data" in include and "uris" not in include: | |
valid_include.append("uris") # type: ignore[arg-type] | |
return ( | |
valid_query_embeddings, | |
valid_n_results, | |
valid_where, | |
valid_where_document, | |
) | |
def _transform_query_response( | |
self, response: QueryResult, include: Include | |
) -> QueryResult: | |
if ( | |
"data" in include | |
and self._data_loader is not None | |
and response["uris"] is not None | |
): | |
response["data"] = [self._data_loader(uris) for uris in response["uris"]] | |
if "embeddings" in include and response["embeddings"] is not None: | |
response["embeddings"] = [ | |
np.array(embedding) for embedding in response["embeddings"] | |
] | |
# Remove URIs from the result if they weren't requested | |
if "uris" not in include: | |
response["uris"] = None | |
return response | |
def _validate_modify_request(self, metadata: Optional[CollectionMetadata]) -> None: | |
if metadata is not None: | |
validate_metadata(metadata) | |
if "hnsw:space" in metadata: | |
raise ValueError( | |
"Changing the distance function of a collection once it is created is not supported currently." | |
) | |
def _update_model_after_modify_success( | |
self, name: Optional[str], metadata: Optional[CollectionMetadata] | |
) -> None: | |
if name: | |
self._model["name"] = name | |
if metadata: | |
self._model["metadata"] = metadata | |
def _validate_and_prepare_update_request( | |
self, | |
ids: OneOrMany[ID], | |
embeddings: Optional[ # type: ignore[type-arg] | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[np.ndarray], | |
] | |
], | |
metadatas: Optional[OneOrMany[Metadata]], | |
documents: Optional[OneOrMany[Document]], | |
images: Optional[OneOrMany[Image]], | |
uris: Optional[OneOrMany[URI]], | |
) -> Tuple[ | |
IDs, | |
Embeddings, | |
Optional[Metadatas], | |
Optional[Documents], | |
Optional[URIs], | |
]: | |
( | |
ids, | |
embeddings, | |
metadatas, | |
documents, | |
images, | |
uris, | |
) = self._validate_embedding_set( | |
ids, | |
embeddings, | |
metadatas, | |
documents, | |
images, | |
uris, | |
require_embeddings_or_data=False, | |
) | |
if embeddings is None: | |
if documents is not None: | |
embeddings = self._embed(input=documents) | |
elif images is not None: | |
embeddings = self._embed(input=images) | |
return ids, cast(Embeddings, embeddings), metadatas, documents, uris | |
def _validate_and_prepare_upsert_request( | |
self, | |
ids: OneOrMany[ID], | |
embeddings: Optional[ | |
Union[ | |
OneOrMany[Embedding], | |
OneOrMany[PyEmbedding], | |
] | |
], | |
metadatas: Optional[OneOrMany[Metadata]], | |
documents: Optional[OneOrMany[Document]], | |
images: Optional[OneOrMany[Image]], | |
uris: Optional[OneOrMany[URI]], | |
) -> Tuple[ | |
IDs, | |
Embeddings, | |
Optional[Metadatas], | |
Optional[Documents], | |
Optional[URIs], | |
]: | |
( | |
ids, | |
embeddings, | |
metadatas, | |
documents, | |
images, | |
uris, | |
) = self._validate_embedding_set( | |
ids, embeddings, metadatas, documents, images, uris | |
) | |
if embeddings is None: | |
if documents is not None: | |
embeddings = self._embed(input=documents) | |
else: | |
embeddings = self._embed(input=images) | |
return ids, embeddings, metadatas, documents, uris | |
def _validate_and_prepare_delete_request( | |
self, | |
ids: Optional[IDs], | |
where: Optional[Where], | |
where_document: Optional[WhereDocument], | |
) -> Tuple[Optional[IDs], Optional[Where], Optional[WhereDocument]]: | |
ids = validate_ids(maybe_cast_one_to_many_ids(ids)) if ids else None | |
where = validate_where(where) if where else None | |
where_document = ( | |
validate_where_document(where_document) if where_document else None | |
) | |
return (ids, where, where_document) | |
def _normalize_embeddings( | |
embeddings: Union[ | |
OneOrMany[Embedding], | |
OneOrMany[PyEmbedding], | |
] | |
) -> Embeddings: | |
return cast(Embeddings, [np.array(embedding) for embedding in embeddings]) | |
def _embed(self, input: Any) -> Embeddings: | |
if self._embedding_function is None: | |
raise ValueError( | |
"You must provide an embedding function to compute embeddings." | |
"https://docs.trychroma.com/guides/embeddings" | |
) | |
return self._embedding_function(input=input) | |