from chromadb.utils import embedding_functions from chromadb.api.types import EmbeddingFunction def test_get_builtins_holds() -> None: """ Ensure that `get_builtins` is consistent after the ef migration. This test is intended to be temporary until the ef migration is complete as these expected builtins are likely to grow as long as users add new embedding functions. REMOVE ME ON THE NEXT EF ADDITION """ expected_builtins = { "AmazonBedrockEmbeddingFunction", "CohereEmbeddingFunction", "GoogleGenerativeAiEmbeddingFunction", "GooglePalmEmbeddingFunction", "GoogleVertexEmbeddingFunction", "HuggingFaceEmbeddingFunction", "HuggingFaceEmbeddingServer", "InstructorEmbeddingFunction", "JinaEmbeddingFunction", "ONNXMiniLM_L6_V2", "OllamaEmbeddingFunction", "OpenAIEmbeddingFunction", "OpenCLIPEmbeddingFunction", "RoboflowEmbeddingFunction", "SentenceTransformerEmbeddingFunction", "Text2VecEmbeddingFunction", "ChromaLangchainEmbeddingFunction", } assert expected_builtins == embedding_functions.get_builtins() def test_default_ef_exists() -> None: assert hasattr(embedding_functions, "DefaultEmbeddingFunction") default_ef = embedding_functions.DefaultEmbeddingFunction() assert default_ef is not None assert isinstance(default_ef, EmbeddingFunction) def test_ef_imports() -> None: for ef in embedding_functions.get_builtins(): # Langchain embedding function is a special snowflake if ef == "ChromaLangchainEmbeddingFunction": continue assert hasattr(embedding_functions, ef) assert isinstance(getattr(embedding_functions, ef), type) assert issubclass(getattr(embedding_functions, ef), EmbeddingFunction)