import multiprocessing from concurrent.futures import Future, ThreadPoolExecutor, wait import random import threading from typing import Any, Dict, List, Optional, Set, Tuple, cast import numpy as np from chromadb.api import ClientAPI import chromadb.test.property.invariants as invariants from chromadb.api.segment import SegmentAPI from chromadb.test.property.strategies import RecordSet from chromadb.test.property.strategies import test_hnsw_config from chromadb.types import Metadata def generate_data_shape() -> Tuple[int, int]: N = random.randint(10, 10000) D = random.randint(10, 256) return (N, D) def generate_record_set(N: int, D: int) -> RecordSet: ids = [str(i) for i in range(N)] metadatas: List[Dict[str, int]] = [{f"{i}": i} for i in range(N)] documents = [f"doc {i}" for i in range(N)] embeddings = np.random.rand(N, D).tolist() # Create a normalized record set to compare against normalized_record_set: RecordSet = { "ids": ids, "embeddings": embeddings, "metadatas": metadatas, # type: ignore "documents": documents, } return normalized_record_set # Hypothesis is bad at generating large datasets so we manually generate data in # this test to test multithreaded add with larger datasets def _test_multithreaded_add( client: ClientAPI, N: int, D: int, num_workers: int ) -> None: records_set = generate_record_set(N, D) ids = records_set["ids"] embeddings = records_set["embeddings"] metadatas = records_set["metadatas"] documents = records_set["documents"] print(f"Adding {N} records with {D} dimensions on {num_workers} workers") # TODO: batch_size and sync_threshold should be configurable client.reset() coll = client.create_collection(name="test", metadata=test_hnsw_config) with ThreadPoolExecutor(max_workers=num_workers) as executor: futures: List[Future[Any]] = [] total_sent = -1 while total_sent < len(ids): # Randomly grab up to 10% of the dataset and send it to the executor batch_size = random.randint(1, N // 10) to_send = min(batch_size, len(ids) - total_sent) start = total_sent + 1 end = total_sent + to_send + 1 if embeddings is not None and len(embeddings[start:end]) == 0: break future = executor.submit( coll.add, ids=ids[start:end], embeddings=embeddings[start:end] if embeddings is not None else None, metadatas=metadatas[start:end] if metadatas is not None else None, # type: ignore documents=documents[start:end] if documents is not None else None, ) futures.append(future) total_sent += to_send wait(futures) for future in futures: exception = future.exception() if exception is not None: raise exception # Check that invariants hold invariants.count(coll, records_set) invariants.ids_match(coll, records_set) invariants.metadatas_match(coll, records_set) invariants.no_duplicates(coll) # Check that the ANN accuracy is good # On a random subset of the dataset query_indices = random.sample([i for i in range(N)], 10) n_results = 5 invariants.ann_accuracy( coll, records_set, n_results=n_results, query_indices=query_indices, ) def _test_interleaved_add_query( client: ClientAPI, N: int, D: int, num_workers: int ) -> None: """Test that will use multiple threads to interleave operations on the db and verify they work correctly""" client.reset() coll = client.create_collection(name="test", metadata=test_hnsw_config) records_set = generate_record_set(N, D) ids = cast(List[str], records_set["ids"]) embeddings = cast(List[float], records_set["embeddings"]) metadatas = cast(List[Metadata], records_set["metadatas"]) documents = records_set["documents"] added_ids: Set[str] = set() lock = threading.Lock() print(f"Adding {N} records with {D} dimensions on {num_workers} workers") def perform_operation( operation: int, ids_to_modify: Optional[List[str]] = None ) -> None: """Perform a random operation on the collection""" if operation == 0: assert ids_to_modify is not None indices_to_modify = [ids.index(id) for id in ids_to_modify] # Add a subset of the dataset if len(indices_to_modify) == 0: return coll.add( ids=ids_to_modify, embeddings=[embeddings[i] for i in indices_to_modify] if embeddings is not None else None, metadatas=[metadatas[i] for i in indices_to_modify] if metadatas is not None else None, documents=[documents[i] for i in indices_to_modify] if documents is not None else None, ) with lock: added_ids.update(ids_to_modify) elif operation == 1: currently_added_ids = [] n_results = 5 with lock: currently_added_ids = list(added_ids.copy()) currently_added_indices = [ids.index(id) for id in currently_added_ids] if ( len(currently_added_ids) == 0 or len(currently_added_indices) < n_results ): return # Query the collection, we can't test the results because we want to interleave # queries and adds. We cannot do so without a lock and serializing the operations # which would defeat the purpose of this test. Instead we interleave queries and # adds and check the invariants at the end query_indices = random.sample( currently_added_indices, min(10, len(currently_added_indices)), ) query_vectors = [embeddings[i] for i in query_indices] # Query the collections coll.query( query_vectors, n_results=n_results, ) with ThreadPoolExecutor(max_workers=num_workers) as executor: futures: List[Future[Any]] = [] total_sent = -1 while total_sent < len(ids) - 1: operation = random.randint(0, 2) if operation == 0: # Randomly grab up to 10% of the dataset and send it to the executor batch_size = random.randint(1, N // 10) to_send = min(batch_size, len(ids) - total_sent) start = total_sent + 1 end = total_sent + to_send + 1 future = executor.submit(perform_operation, operation, ids[start:end]) futures.append(future) total_sent += to_send elif operation == 1: future = executor.submit( perform_operation, operation, ) futures.append(future) wait(futures) for future in futures: exception = future.exception() if exception is not None: raise exception if ( isinstance(client, SegmentAPI) and client.get_settings().is_persistent is True ): # we can't check invariants for FastAPI invariants.fd_not_exceeding_threadpool_size(num_workers) # Check that invariants hold invariants.count(coll, records_set) invariants.ids_match(coll, records_set) invariants.metadatas_match(coll, records_set) invariants.no_duplicates(coll) # Check that the ANN accuracy is good # On a random subset of the dataset query_indices = random.sample([i for i in range(N)], 10) n_results = 5 invariants.ann_accuracy( coll, records_set, n_results=n_results, query_indices=query_indices, ) def test_multithreaded_add(client: ClientAPI) -> None: for i in range(3): num_workers = random.randint(2, multiprocessing.cpu_count() * 2) N, D = generate_data_shape() _test_multithreaded_add(client, N, D, num_workers) def test_interleaved_add_query(client: ClientAPI) -> None: for i in range(3): num_workers = random.randint(2, multiprocessing.cpu_count() * 2) N, D = generate_data_shape() _test_interleaved_add_query(client, N, D, num_workers)