File size: 12,007 Bytes
a5b18c8
2a7d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584853
 
2a7d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584853
 
 
 
 
 
 
2a7d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584853
 
 
2a7d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584853
2a7d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584853
 
 
 
 
 
 
 
2a7d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584853
2a7d287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b18c8
 
 
2584853
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import gradio as gr
import os

from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_huggingface import HuggingFaceEndpoint

from pathlib import Path
import chromadb
from unidecode import unidecode

from transformers import AutoTokenizer
import transformers
import torch
import tqdm
import accelerate
import re

# LLM model to use
llm_model = "mistralai/Mistral-7B-Instruct-v0.2"


# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits


# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.PersistentClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
    )
    return vectordb


# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma(
        embedding_function=embedding)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.5, desc="Initializing HF Hub...")
    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
        load_in_8bit=True,
    )

    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain


# Generate collection name for vector database
def create_collection_name(filepath):
    collection_name = Path(filepath).stem
    collection_name = collection_name.replace(" ", "-")
    collection_name = unidecode(collection_name)
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
    collection_name = collection_name[:50]
    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    print('Filepath: ', filepath)
    print('Collection name: ', collection_name)
    return collection_name


# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    progress(0.1, desc="Creating collection name...")
    collection_name = create_collection_name(list_file_path[0])
    progress(0.25, desc="Loading document...")
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    progress(0.5, desc="Generating vector database...")
    vector_db = create_db(doc_splits, collection_name)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"


def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    print("LLM model: ", llm_model)
    qa_chain = initialize_llmchain(llm_model, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"


def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history


def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(
        value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page


def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    return list_file_path


def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()

        gr.Markdown(
            """<center><h2>PDF-based chatbot</center></h2>
            <h3>Ask any questions about your PDF documents</h3>""")
        gr.Markdown(
            """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
            The user interface explicitly shows multiple steps to help understand the RAG workflow. 
            This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
            <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
            """)

        with gr.Tab("Step 1 - Upload PDF"):
            with gr.Row():
                document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True,
                                    label="Upload your PDF documents (single or multiple)")

        with gr.Tab("Step 2 - Process document"):
            with gr.Row():
                db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index",
                                  info="Choose your vector database")
            with gr.Accordion("Advanced options - Document text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size",
                                                  info="Chunk size", interactive=True)
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap",
                                                     info="Chunk overlap", interactive=True)
            with gr.Row():
                db_progress = gr.Textbox(label="Vector database initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Generate vector database")

        with gr.Tab("Step 3 - Initialize QA chain"):
            with gr.Row():
                slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature",
                                               info="Model temperature", interactive=True)
            with gr.Row():
                slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens",
                                             info="Model max tokens", interactive=True)
            with gr.Row():
                slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples",
                                        info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_progress = gr.Textbox(value="None", label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize Question Answering chain")

        with gr.Tab("Step 4 - Chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                    source1_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                    source2_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                    source3_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit message")
                clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")

        db_btn.click(initialize_database, \
                     inputs=[document, slider_chunk_size, slider_chunk_overlap], \
                     outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, \
                          inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], \
                          outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0, "", 0], \
                                                                 inputs=None, \
                                                                 outputs=[chatbot, doc_source1, source1_page,
                                                                          doc_source2, source2_page, doc_source3,
                                                                          source3_page], \
                                                                 queue=False)

        msg.submit(conversation, \
                   inputs=[qa_chain, msg, chatbot], \
                   outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3,
                            source3_page], \
                   queue=False)
        submit_btn.click(conversation, \
                         inputs=[qa_chain, msg, chatbot], \
                         outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page,
                                  doc_source3, source3_page], \
                         queue=False)
        clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], \
                        inputs=None, \
                        outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3,
                                 source3_page], \
                        queue=False)
    demo.queue().launch(debug=True)


if __name__ == "__main__":
    demo()