Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import ConversationChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain_huggingface import HuggingFaceEndpoint | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
from transformers import AutoTokenizer | |
import transformers | |
import torch | |
import tqdm | |
import accelerate | |
import re | |
# LLM model to use | |
llm_model = "mistralai/Mistral-7B-Instruct-v0.2" | |
# Load PDF document and create doc splits | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Create vector database | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
new_client = chromadb.PersistentClient() | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name, | |
) | |
return vectordb | |
# Load vector database | |
def load_db(): | |
embedding = HuggingFaceEmbeddings() | |
vectordb = Chroma( | |
embedding_function=embedding) | |
return vectordb | |
# Initialize langchain LLM chain | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
progress(0.5, desc="Initializing HF Hub...") | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
load_in_8bit=True, | |
) | |
progress(0.75, desc="Defining buffer memory...") | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
progress(0.8, desc="Defining retrieval chain...") | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
progress(0.9, desc="Done!") | |
return qa_chain | |
# Generate collection name for vector database | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = collection_name.replace(" ", "-") | |
collection_name = unidecode(collection_name) | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) | |
collection_name = collection_name[:50] | |
if len(collection_name) < 3: | |
collection_name = collection_name + 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
print('Filepath: ', filepath) | |
print('Collection name: ', collection_name) | |
return collection_name | |
# Initialize database | |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
progress(0.1, desc="Creating collection name...") | |
collection_name = create_collection_name(list_file_path[0]) | |
progress(0.25, desc="Loading document...") | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
progress(0.5, desc="Generating vector database...") | |
vector_db = create_db(doc_splits, collection_name) | |
progress(0.9, desc="Done!") | |
return vector_db, collection_name, "Complete!" | |
def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
print("LLM model: ", llm_model) | |
qa_chain = initialize_llmchain(llm_model, llm_temperature, max_tokens, top_k, vector_db, progress) | |
return qa_chain, "Complete!" | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if response_answer.find("Helpful Answer:") != -1: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update( | |
value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
def upload_file(file_obj): | |
list_file_path = [] | |
for idx, file in enumerate(file_obj): | |
file_path = file_obj.name | |
list_file_path.append(file_path) | |
return list_file_path | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
collection_name = gr.State() | |
gr.Markdown( | |
"""<center><h2>PDF-based chatbot</center></h2> | |
<h3>Ask any questions about your PDF documents</h3>""") | |
gr.Markdown( | |
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \ | |
The user interface explicitly shows multiple steps to help understand the RAG workflow. | |
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br> | |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply. | |
""") | |
with gr.Tab("Step 1 - Upload PDF"): | |
with gr.Row(): | |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, | |
label="Upload your PDF documents (single or multiple)") | |
with gr.Tab("Step 2 - Process document"): | |
with gr.Row(): | |
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", | |
info="Choose your vector database") | |
with gr.Accordion("Advanced options - Document text splitter", open=False): | |
with gr.Row(): | |
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", | |
info="Chunk size", interactive=True) | |
with gr.Row(): | |
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", | |
info="Chunk overlap", interactive=True) | |
with gr.Row(): | |
db_progress = gr.Textbox(label="Vector database initialization", value="None") | |
with gr.Row(): | |
db_btn = gr.Button("Generate vector database") | |
with gr.Tab("Step 3 - Initialize QA chain"): | |
with gr.Row(): | |
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", | |
info="Model temperature", interactive=True) | |
with gr.Row(): | |
slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", | |
info="Model max tokens", interactive=True) | |
with gr.Row(): | |
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", | |
info="Model top-k samples", interactive=True) | |
with gr.Row(): | |
llm_progress = gr.Textbox(value="None", label="QA chain initialization") | |
with gr.Row(): | |
qachain_btn = gr.Button("Initialize Question Answering chain") | |
with gr.Tab("Step 4 - Chatbot"): | |
chatbot = gr.Chatbot(height=300) | |
with gr.Accordion("Advanced - Document references", open=False): | |
with gr.Row(): | |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) | |
source1_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) | |
source2_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) | |
source3_page = gr.Number(label="Page", scale=1) | |
with gr.Row(): | |
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True) | |
with gr.Row(): | |
submit_btn = gr.Button("Submit message") | |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation") | |
db_btn.click(initialize_database, \ | |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \ | |
outputs=[vector_db, collection_name, db_progress]) | |
qachain_btn.click(initialize_LLM, \ | |
inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], \ | |
outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0, "", 0], \ | |
inputs=None, \ | |
outputs=[chatbot, doc_source1, source1_page, | |
doc_source2, source2_page, doc_source3, | |
source3_page], \ | |
queue=False) | |
msg.submit(conversation, \ | |
inputs=[qa_chain, msg, chatbot], \ | |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, | |
source3_page], \ | |
queue=False) | |
submit_btn.click(conversation, \ | |
inputs=[qa_chain, msg, chatbot], \ | |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, | |
doc_source3, source3_page], \ | |
queue=False) | |
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], \ | |
inputs=None, \ | |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, | |
source3_page], \ | |
queue=False) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() | |