himel06 commited on
Commit
0a0ee29
·
verified ·
1 Parent(s): dd1f323

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -42
app.py CHANGED
@@ -148,7 +148,7 @@ def demo():
148
  collection_name = gr.State()
149
 
150
  gr.Markdown(
151
- """<center><h2>PDF-based chatbot</center></h2>
152
  <h3>Ask any questions about your PDF documents</h3>""")
153
  gr.Markdown(
154
  """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
@@ -157,50 +157,50 @@ def demo():
157
  <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
158
  """)
159
 
160
- gr.Markdown("<h4>Step 1 - Process and Load Documents from 'data' Folder</h4>")
161
- with gr.Row():
162
- slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size",
163
- info="Chunk size", interactive=True)
164
- with gr.Row():
165
- slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap",
166
- info="Chunk overlap", interactive=True)
167
- with gr.Row():
168
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
169
- with gr.Row():
170
- db_btn = gr.Button("Generate vector database")
171
-
172
- gr.Markdown("<h4>Step 2 - Initialize QA chain</h4>")
173
- with gr.Row():
174
- slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature",
175
- info="Model temperature", interactive=True)
176
- with gr.Row():
177
- slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens",
178
- info="Model max tokens", interactive=True)
179
- with gr.Row():
180
- slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples",
181
- info="Model top-k samples", interactive=True)
182
- with gr.Row():
183
- llm_progress = gr.Textbox(value="None", label="QA chain initialization")
184
- with gr.Row():
185
- qachain_btn = gr.Button("Initialize Question Answering chain")
186
-
187
- gr.Markdown("<h4>Step 3 - Chatbot</h4>")
188
- chatbot = gr.Chatbot(height=300)
189
- with gr.Accordion("Advanced - Document references", open=False):
190
  with gr.Row():
191
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
192
- source1_page = gr.Number(label="Page", scale=1)
193
  with gr.Row():
194
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
195
- source2_page = gr.Number(label="Page", scale=1)
196
  with gr.Row():
197
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
198
- source3_page = gr.Number(label="Page", scale=1)
199
- with gr.Row():
200
- msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
201
- with gr.Row():
202
- submit_btn = gr.Button("Submit message")
203
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
 
205
  db_btn.click(initialize_database, \
206
  inputs=[slider_chunk_size, slider_chunk_overlap], \
 
148
  collection_name = gr.State()
149
 
150
  gr.Markdown(
151
+ """<center><h2>Haor Chatbot by Tasrif Nur Himel</center></h2>
152
  <h3>Ask any questions about your PDF documents</h3>""")
153
  gr.Markdown(
154
  """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
 
157
  <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
158
  """)
159
 
160
+ with gr.Tab("Step 1 - Process and Load Document"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  with gr.Row():
162
+ slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size",
163
+ info="Chunk size", interactive=True)
164
  with gr.Row():
165
+ slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap",
166
+ info="Chunk overlap", interactive=True)
167
  with gr.Row():
168
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
169
+ with gr.Row():
170
+ db_btn = gr.Button("Generate vector database")
171
+
172
+ with gr.Tab("Step 2 - Initialize QA chain"):
173
+ with gr.Row():
174
+ slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature",
175
+ info="Model temperature", interactive=True)
176
+ with gr.Row():
177
+ slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens",
178
+ info="Model max tokens", interactive=True)
179
+ with gr.Row():
180
+ slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples",
181
+ info="Model top-k samples", interactive=True)
182
+ with gr.Row():
183
+ llm_progress = gr.Textbox(value="None", label="QA chain initialization")
184
+ with gr.Row():
185
+ qachain_btn = gr.Button("Initialize Question Answering chain")
186
+
187
+ with gr.Tab("Step 3 - Chatbot"):
188
+ chatbot = gr.Chatbot(height=300)
189
+ with gr.Accordion("Advanced - Document references", open=False):
190
+ with gr.Row():
191
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
192
+ source1_page = gr.Number(label="Page", scale=1)
193
+ with gr.Row():
194
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
195
+ source2_page = gr.Number(label="Page", scale=1)
196
+ with gr.Row():
197
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
198
+ source3_page = gr.Number(label="Page", scale=1)
199
+ with gr.Row():
200
+ msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
201
+ with gr.Row():
202
+ submit_btn = gr.Button("Submit message")
203
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
204
 
205
  db_btn.click(initialize_database, \
206
  inputs=[slider_chunk_size, slider_chunk_overlap], \