#This model build by Tasrif Nur Himel import gradio as gr import os from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_huggingface import HuggingFaceEndpoint from pathlib import Path import chromadb from unidecode import unidecode import re # LLM model to use llm_model = "mistralai/Mistral-7B-Instruct-v0.2" # Directory where PDFs are stored pdf_directory = "data" # Load PDF documents from the specified directory and create doc splits def load_docs_from_directory(directory_path, chunk_size, chunk_overlap): pdf_files = [os.path.join(directory_path, f) for f in os.listdir(directory_path) if f.endswith('.pdf')] loaders = [PyPDFLoader(file) for file in pdf_files] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits, pdf_files # Create vector database def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.PersistentClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb # Load vector database def load_db(): embedding = HuggingFaceEmbeddings() vectordb = Chroma( embedding_function=embedding) return vectordb # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): progress(0.5, desc="Initializing HF Hub...") llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, load_in_8bit=True, ) progress(0.75, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() progress(0.8, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Done!") return qa_chain # Generate collection name for vector database def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = collection_name.replace(" ", "-") collection_name = unidecode(collection_name) collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) collection_name = collection_name[:50] if len(collection_name) < 3: collection_name = collection_name + 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' print('Filepath: ', filepath) print('Collection name: ', collection_name) return collection_name # Initialize database def initialize_database(chunk_size, chunk_overlap, progress=gr.Progress()): progress(0.1, desc="Loading documents from directory...") doc_splits, pdf_files = load_docs_from_directory(pdf_directory, chunk_size, chunk_overlap) collection_name = create_collection_name(pdf_files[0]) progress(0.5, desc="Generating vector database...") vector_db = create_db(doc_splits, collection_name) progress(0.9, desc="Database initialization complete!") return vector_db, collection_name, "Complete!" def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): print("LLM model: ", llm_model) qa_chain = initialize_llmchain(llm_model, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "Complete!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update( value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """

Haor Chatbot by Tasrif Nur Himel

Ask any questions about your PDF documents

""") gr.Markdown( """Note: This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \ The user interface explicitly shows multiple steps to help understand the RAG workflow. This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.

Warning: This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply. """) with gr.Tab("Step 1 - Process and Load Document"): with gr.Row(): slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) with gr.Row(): slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) with gr.Row(): db_progress = gr.Textbox(label="Vector database initialization", value="None") with gr.Row(): db_btn = gr.Button("Generate vector database") with gr.Tab("Step 2 - Initialize QA chain"): with gr.Row(): slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True) with gr.Row(): slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True) with gr.Row(): slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True) with gr.Row(): llm_progress = gr.Textbox(value="None", label="QA chain initialization") with gr.Row(): qachain_btn = gr.Button("Initialize Question Answering chain") with gr.Tab("Step 3 - Chatbot"): chatbot = gr.Chatbot(height=300) with gr.Accordion("Advanced - Document references", open=False): with gr.Row(): doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) source1_page = gr.Number(label="Page", scale=1) with gr.Row(): doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) source2_page = gr.Number(label="Page", scale=1) with gr.Row(): doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) source3_page = gr.Number(label="Page", scale=1) with gr.Row(): msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True) with gr.Row(): submit_btn = gr.Button("Submit message") clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation") db_btn.click(initialize_database, \ inputs=[slider_chunk_size, slider_chunk_overlap], \ outputs=[vector_db, collection_name, db_progress]) qachain_btn.click(initialize_LLM, \ inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], \ outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0, "", 0], \ inputs=None, \ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ queue=False) msg.submit(conversation, \ inputs=[qa_chain, msg, chatbot], \ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ queue=False) submit_btn.click(conversation, \ inputs=[qa_chain, msg, chatbot], \ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ queue=False) clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], \ inputs=None, \ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ queue=False) demo.queue().launch(debug=True) if __name__ == "__main__": demo()