Spaces:
Runtime error
Runtime error
File size: 1,385 Bytes
5dc0980 ce9a470 5dc0980 d900c5f 5dc0980 ae0430f ce9a470 ae0430f 5dc0980 ae0430f ce9a470 ae0430f a967e1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
#gr.Interface.load("models/hipnologo/gpt2-imdb-finetune").launch()
import gradio as gr
from gradio import inputs, outputs
from transformers import AutoTokenizer, AutoModelForSequenceClassification
def predict_review(text):
# Specify the model name or path
model_name = "hipnologo/gpt2-imdb-finetune" # Replace with your model name on the Hugging Face model hub
# Load your model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# encoding the input text
input_ids = tokenizer.encode(text, return_tensors="pt")
# getting the logits
output = model(input_ids)
logits = output.logits
# getting the predicted class
predicted_class = logits.argmax(-1).item()
sentiment = 'Positive' if predicted_class == 1 else 'Negative'
# Create a Markdown string for the output
result_md = f"Sentiment: {sentiment}"
return result_md
iface = gr.Interface(
fn=predict_review,
inputs=inputs.Textbox(lines=7, placeholder="Enter text here..."),
outputs=outputs.Text(),
title="Sentiment Analysis",
description="This application predicts the sentiment (Positive/Negative) of the input text using a fine-tuned GPT-2 model.",
theme="compact" # change this to the theme you prefer: 'huggingface', 'default'
)
iface.launch()
|