hipnologo's picture
Update app.py
d900c5f
raw
history blame
962 Bytes
import gradio as gr
#gr.Interface.load("models/hipnologo/gpt2-imdb-finetune").launch()
from transformers import AutoTokenizer, AutoModelForSequenceClassification
def predict_review(text):
# Specify the model name or path
model_name = "hipnologo/gpt2-imdb-finetune" # Replace with your model name on the Hugging Face model hub
# Load your model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# encoding the input text
input_ids = tokenizer.encode(text, return_tensors="pt")
# getting the logits
output = model(input_ids)
logits = output.logits
# getting the predicted class
predicted_class = logits.argmax(-1).item()
return f"The sentiment predicted by the model is: {'Positive' if predicted_class == 1 else 'Negative'}"
iface = gr.Interface(fn=predict_review, inputs="textbox", outputs="text")
iface.launch()