File size: 3,348 Bytes
695363c
 
f3dbd83
64c5ee5
 
 
 
695363c
2e7c89d
 
 
f3dbd83
695363c
 
2d000f8
2e7c89d
 
695363c
 
 
2e7c89d
9d8c9ea
 
695363c
2e7c89d
7b61abf
 
 
d1cb3da
695363c
2e7c89d
7b61abf
 
695363c
 
 
 
64c5ee5
 
695363c
7b61abf
 
695363c
 
 
f274747
 
 
7b61abf
64c5ee5
8a2ba4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64c5ee5
f274747
64c5ee5
 
 
 
 
 
 
 
 
 
7b61abf
a12b796
695363c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e7c89d
695363c
 
 
 
 
f3dbd83
695363c
 
 
d1cb3da
9d8c9ea
695363c
d1cb3da
695363c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
import rdflib
import requests
import matplotlib.pyplot as plt
import networkx as nx
from io import BytesIO
import base64

# Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
def load_names_from_url(jsonld_url):
    response = requests.get(jsonld_url)
    data = response.json()
    
    names = []
    for item in data:
        if 'name' in item:
            names.append(item['name'])
    
    return names

# Carregar nomes do arquivo JSON-LD
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
names = load_names_from_url(jsonld_url)

def run_query_and_visualize(qtext, jsonld_url):
    print("Executando consulta SPARQL...")
    print(f"Consulta SPARQL: {qtext}")
    
    # Carrega o arquivo JSON-LD
    g = rdflib.Graph()
    g.parse(jsonld_url, format="json-ld")
    
    print("Consulta SPARQL carregada...")

    # Executa a consulta SPARQL
    qres = g.query(qtext)

    # Cria o gráfico de rede
    G = nx.DiGraph()

    print("Processando resultados da consulta...")

    # Processa os resultados da consulta
    for row in qres:
        s, p, o = row
        G.add_node(str(s), label=str(s).split('/')[-1])  # Usar o último segmento da URI como rótulo
        G.add_node(str(o), label=str(o).split('/')[-1])
        G.add_edge(str(s), str(o), label=str(p).split('/')[-1])
    
    # Desenha o gráfico usando NetworkX e Matplotlib
    pos = {
        "Adem": (0, 0.6),
        "Adem-geo": (-0.4, -0.3),
        "Adem-obra": (0.4, -0.1)
    }

    plt.figure(figsize=(10, 8))
    nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
    nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
    nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
    nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")

    plt.xlim(-1, 1)
    plt.ylim(-1, 1)

    plt.title("Resultado da Consulta SPARQL", size=15)
    plt.axis('off')
    
    # Salva o gráfico em um arquivo
    buf = BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    img_str = base64.b64encode(buf.read()).decode()
    graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
    
    plt.close()

    print("Gráfico gerado com sucesso.")
    return graph_html

def update_query(selected_location):
    return f"""
    PREFIX schema: <http://schema.org/>
    SELECT * WHERE {{
        ?s schema:name "{selected_location}" .
        ?s ?p ?o .
    }}
    """

with gr.Blocks() as demo:
    gr.Markdown("# Visualização de Query SPARQL")

    with gr.Column():
        selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
        query_input = gr.Textbox(label="Consulta SPARQL", value=update_query(names[0]) if names else "", lines=10)
        run_button = gr.Button("Executar Consulta")

    graph_output = gr.HTML()

    def on_location_change(loc):
        return update_query(loc)

    selected_location.change(fn=on_location_change, inputs=selected_location, outputs=query_input)

    def on_run_button_click(query):
        return run_query_and_visualize(query, jsonld_url)

    run_button.click(fn=on_run_button_click, inputs=[query_input], outputs=graph_output)

demo.launch()