histlearn commited on
Commit
1011232
·
verified ·
1 Parent(s): 5414c8d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +136 -78
app.py CHANGED
@@ -1,3 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import rdflib
3
  import requests
@@ -6,98 +39,123 @@ import networkx as nx
6
  from io import BytesIO
7
  import base64
8
 
9
- # Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
10
  def load_names_from_url(jsonld_url):
11
- response = requests.get(jsonld_url)
12
- data = response.json()
13
-
14
- names = []
15
- for item in data:
16
- if 'name' in item:
17
- names.append(item['name'])
18
-
19
- return names
20
-
21
- # Carregar nomes do arquivo JSON-LD
22
- jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
23
- names = load_names_from_url(jsonld_url)
 
24
 
25
  def build_graph_from_jsonld(jsonld_url, selected_name):
26
- response = requests.get(jsonld_url)
27
- data = response.json()
28
-
29
- # Filtrar o local selecionado
30
- selected_data = next((item for item in data if item['name'] == selected_name), None)
31
-
32
- if not selected_data:
33
- return "Local não encontrado."
34
-
35
- G = nx.DiGraph()
36
-
37
- # Adicionar nó do Place
38
- place_id = selected_data['@id']
39
- place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
40
- G.add_node(place_id, label=place_label)
41
-
42
- # Adicionar nó de GeoCoordinates
43
- geo_data = selected_data['geo']
44
- geo_id = geo_data['@id']
45
- geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
46
- G.add_node(geo_id, label=geo_label)
47
- G.add_edge(place_id, geo_id, label="schema:geo")
48
-
49
- # Adicionar nós de CreativeWork
50
- for work in selected_data.get('subjectOf', []):
51
- work_id = work['@id']
52
- work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
53
- G.add_node(work_id, label=work_label)
54
- G.add_edge(place_id, work_id, label="schema:subjectOf")
55
-
56
- return G
 
 
 
57
 
58
  def run_query_and_visualize(selected_location, jsonld_url):
59
- G = build_graph_from_jsonld(jsonld_url, selected_location)
 
 
 
 
 
60
 
61
- if isinstance(G, str): # Caso de erro
62
- return G
63
-
64
- # Define posições específicas para os nós importantes
65
- pos = nx.spring_layout(G)
66
-
67
- # Desenha o gráfico usando NetworkX e Matplotlib
68
- plt.figure(figsize=(15, 10))
69
- nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
70
- nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
71
- nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
72
- nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
73
-
74
- plt.title("Resultado da Consulta", size=15)
75
- plt.axis('off')
76
-
77
- # Salva o gráfico em um arquivo
78
- buf = BytesIO()
79
- plt.savefig(buf, format='png')
80
- buf.seek(0)
81
- img_str = base64.b64encode(buf.read()).decode()
82
- graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
83
-
84
- plt.close()
85
 
86
- print("Gráfico gerado com sucesso.")
87
- return graph_html
 
 
 
88
 
 
89
  with gr.Blocks() as demo:
90
- gr.Markdown("# Visualização de Query SPARQL")
 
 
 
91
 
92
  with gr.Column():
93
- selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
94
- run_button = gr.Button("Visualizar Grafo")
 
 
 
 
95
 
96
- graph_output = gr.HTML()
 
 
97
 
98
  def on_run_button_click(selected_location):
99
  return run_query_and_visualize(selected_location, jsonld_url)
100
 
101
- run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
 
 
 
 
102
 
103
- demo.launch()
 
 
1
+ import subprocess
2
+ import pkg_resources
3
+ import sys
4
+ import time
5
+
6
+ def update_gradio():
7
+ """Atualiza o Gradio para a versão mais recente."""
8
+ try:
9
+ subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'gradio'])
10
+ print("Gradio atualizado com sucesso!")
11
+ print("Reiniciando aplicação...")
12
+ time.sleep(2)
13
+ python = sys.executable
14
+ subprocess.Popen([python] + sys.argv)
15
+ sys.exit(0)
16
+ except Exception as e:
17
+ print(f"Erro ao atualizar Gradio: {e}")
18
+
19
+ # Verifica e atualiza o Gradio se necessário
20
+ try:
21
+ current_version = pkg_resources.get_distribution('gradio').version
22
+ latest_version = subprocess.check_output([sys.executable, '-m', 'pip', 'index', 'versions', 'gradio']).decode().split('\n')[0].split(' ')[-1]
23
+
24
+ if current_version != latest_version:
25
+ print(f"Atualizando Gradio: {current_version} -> {latest_version}")
26
+ update_gradio()
27
+ else:
28
+ print(f"Gradio já está na versão mais recente: {current_version}")
29
+ except:
30
+ print("Instalando Gradio...")
31
+ update_gradio()
32
+
33
+ # Importações necessárias
34
  import gradio as gr
35
  import rdflib
36
  import requests
 
39
  from io import BytesIO
40
  import base64
41
 
 
42
  def load_names_from_url(jsonld_url):
43
+ """Carrega e extrai os nomes do arquivo JSON-LD a partir de uma URL."""
44
+ try:
45
+ response = requests.get(jsonld_url)
46
+ data = response.json()
47
+
48
+ names = []
49
+ for item in data:
50
+ if 'name' in item:
51
+ names.append(item['name'])
52
+
53
+ return sorted(names) # Retorna nomes ordenados alfabeticamente
54
+ except Exception as e:
55
+ print(f"Erro ao carregar dados: {e}")
56
+ return []
57
 
58
  def build_graph_from_jsonld(jsonld_url, selected_name):
59
+ """Constrói o grafo a partir dos dados JSON-LD."""
60
+ try:
61
+ response = requests.get(jsonld_url)
62
+ data = response.json()
63
+
64
+ selected_data = next((item for item in data if item['name'] == selected_name), None)
65
+
66
+ if not selected_data:
67
+ return "Local não encontrado."
68
+
69
+ G = nx.DiGraph()
70
+
71
+ # Adicionar nó do Place
72
+ place_id = selected_data['@id']
73
+ place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
74
+ G.add_node(place_id, label=place_label)
75
+
76
+ # Adicionar nó de GeoCoordinates
77
+ geo_data = selected_data['geo']
78
+ geo_id = geo_data['@id']
79
+ geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
80
+ G.add_node(geo_id, label=geo_label)
81
+ G.add_edge(place_id, geo_id, label="schema:geo")
82
+
83
+ # Adicionar nós de CreativeWork
84
+ for work in selected_data.get('subjectOf', []):
85
+ work_id = work['@id']
86
+ work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
87
+ G.add_node(work_id, label=work_label)
88
+ G.add_edge(place_id, work_id, label="schema:subjectOf")
89
+
90
+ return G
91
+ except Exception as e:
92
+ return f"Erro ao construir grafo: {e}"
93
 
94
  def run_query_and_visualize(selected_location, jsonld_url):
95
+ """Executa a consulta e visualiza o resultado."""
96
+ try:
97
+ if not selected_location:
98
+ return '<div style="text-align: center; padding: 20px;">Selecione um local para visualizar o grafo</div>'
99
+
100
+ G = build_graph_from_jsonld(jsonld_url, selected_location)
101
 
102
+ if isinstance(G, str): # Caso de erro
103
+ return f'<div style="color: red; text-align: center; padding: 20px;">{G}</div>'
104
+
105
+ plt.figure(figsize=(15, 10))
106
+ pos = nx.spring_layout(G)
107
+
108
+ nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
109
+ nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
110
+ nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
111
+ nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
112
+
113
+ plt.title(f"Grafo para: {selected_location}", size=15)
114
+ plt.axis('off')
115
+
116
+ buf = BytesIO()
117
+ plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
118
+ buf.seek(0)
119
+ img_str = base64.b64encode(buf.read()).decode()
120
+ plt.close()
121
+
122
+ return f'<img src="data:image/png;base64,{img_str}" style="width: 100%; max-width: 1200px;"/>'
123
+ except Exception as e:
124
+ return f'<div style="color: red; text-align: center; padding: 20px;">Erro ao gerar visualização: {e}</div>'
 
125
 
126
+ # URL do arquivo JSON-LD
127
+ jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
128
+
129
+ # Carrega os nomes iniciais
130
+ names = load_names_from_url(jsonld_url)
131
 
132
+ # Interface Gradio
133
  with gr.Blocks() as demo:
134
+ gr.Markdown("""
135
+ # Visualização de Grafos de Localidades
136
+ Selecione um local para visualizar seu grafo de relacionamentos.
137
+ """)
138
 
139
  with gr.Column():
140
+ selected_location = gr.Dropdown(
141
+ choices=names,
142
+ label="Selecione o Local",
143
+ info="Escolha um local para ver suas relações"
144
+ )
145
+ run_button = gr.Button("Visualizar Grafo", variant="primary")
146
 
147
+ graph_output = gr.HTML(
148
+ value='<div style="text-align: center; padding: 20px;">Selecione um local e clique em "Visualizar Grafo"</div>'
149
+ )
150
 
151
  def on_run_button_click(selected_location):
152
  return run_query_and_visualize(selected_location, jsonld_url)
153
 
154
+ run_button.click(
155
+ fn=on_run_button_click,
156
+ inputs=[selected_location],
157
+ outputs=graph_output
158
+ )
159
 
160
+ if __name__ == "__main__":
161
+ demo.launch()