Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
import rdflib
|
3 |
import requests
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
import networkx as nx
|
6 |
-
|
7 |
-
import
|
8 |
|
9 |
-
#
|
10 |
def load_names_from_url(jsonld_url):
|
11 |
response = requests.get(jsonld_url)
|
12 |
data = response.json()
|
13 |
-
|
14 |
-
names = []
|
15 |
-
for item in data:
|
16 |
-
if 'name' in item:
|
17 |
-
names.append(item['name'])
|
18 |
-
|
19 |
-
return names
|
20 |
|
21 |
-
#
|
22 |
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
|
23 |
names = load_names_from_url(jsonld_url)
|
24 |
|
@@ -26,78 +19,85 @@ def build_graph_from_jsonld(jsonld_url, selected_name):
|
|
26 |
response = requests.get(jsonld_url)
|
27 |
data = response.json()
|
28 |
|
29 |
-
# Filtrar o local selecionado
|
30 |
selected_data = next((item for item in data if item['name'] == selected_name), None)
|
31 |
|
32 |
if not selected_data:
|
33 |
return "Local não encontrado."
|
34 |
|
35 |
-
|
36 |
|
37 |
-
#
|
38 |
place_id = selected_data['@id']
|
39 |
-
place_label = f"
|
40 |
-
|
41 |
|
42 |
-
#
|
43 |
geo_data = selected_data['geo']
|
44 |
geo_id = geo_data['@id']
|
45 |
-
geo_label = f"
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
#
|
50 |
for work in selected_data.get('subjectOf', []):
|
51 |
work_id = work['@id']
|
52 |
-
work_label = f"
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
G = build_graph_from_jsonld(jsonld_url, selected_location)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# Desenha o gráfico usando NetworkX e Matplotlib
|
68 |
-
plt.figure(figsize=(15, 10))
|
69 |
-
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
|
70 |
-
nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
|
71 |
-
nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
|
72 |
-
nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
|
73 |
-
|
74 |
-
plt.title("Resultado da Consulta", size=15)
|
75 |
-
plt.axis('off')
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
img_str = base64.b64encode(buf.read()).decode()
|
82 |
-
graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
|
83 |
|
84 |
-
plt.close()
|
85 |
-
|
86 |
-
print("Gráfico gerado com sucesso.")
|
87 |
return graph_html
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
def on_run_button_click(selected_location):
|
99 |
-
return run_query_and_visualize(selected_location
|
100 |
|
101 |
run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
|
102 |
|
103 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import rdflib
|
3 |
import requests
|
|
|
4 |
import networkx as nx
|
5 |
+
import plotly.graph_objs as go
|
6 |
+
from pyvis.network import Network
|
7 |
|
8 |
+
# Function to load and extract names from the JSON-LD file
|
9 |
def load_names_from_url(jsonld_url):
|
10 |
response = requests.get(jsonld_url)
|
11 |
data = response.json()
|
12 |
+
return [item['name'] for item in data if 'name' in item]
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Load names from the JSON-LD file
|
15 |
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
|
16 |
names = load_names_from_url(jsonld_url)
|
17 |
|
|
|
19 |
response = requests.get(jsonld_url)
|
20 |
data = response.json()
|
21 |
|
|
|
22 |
selected_data = next((item for item in data if item['name'] == selected_name), None)
|
23 |
|
24 |
if not selected_data:
|
25 |
return "Local não encontrado."
|
26 |
|
27 |
+
net = Network(height="600px", width="100%", bgcolor="#222222", font_color="white")
|
28 |
|
29 |
+
# Add Place node
|
30 |
place_id = selected_data['@id']
|
31 |
+
place_label = f"Name: {selected_data['name']}\nDescription: {selected_data['description'][:100]}..."
|
32 |
+
net.add_node(place_id, label=selected_data['name'], title=place_label, color="#00ffff")
|
33 |
|
34 |
+
# Add GeoCoordinates node
|
35 |
geo_data = selected_data['geo']
|
36 |
geo_id = geo_data['@id']
|
37 |
+
geo_label = f"Lat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nName: {geo_data['gn:name']}"
|
38 |
+
net.add_node(geo_id, label="Geo", title=geo_label, color="#ff9999")
|
39 |
+
net.add_edge(place_id, geo_id, title="schema:geo")
|
40 |
|
41 |
+
# Add CreativeWork nodes
|
42 |
for work in selected_data.get('subjectOf', []):
|
43 |
work_id = work['@id']
|
44 |
+
work_label = f"Headline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:100]}..."
|
45 |
+
net.add_node(work_id, label=work['headline'], title=work_label, color="#99ff99")
|
46 |
+
net.add_edge(place_id, work_id, title="schema:subjectOf")
|
47 |
|
48 |
+
net.toggle_physics(True)
|
49 |
+
net.show_buttons(filter_=['physics'])
|
50 |
+
return net
|
|
|
51 |
|
52 |
+
def run_query_and_visualize(selected_location):
|
53 |
+
net = build_graph_from_jsonld(jsonld_url, selected_location)
|
54 |
|
55 |
+
if isinstance(net, str): # Error case
|
56 |
+
return net
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Save the graph as HTML
|
59 |
+
net.save_graph("temp_graph.html")
|
60 |
+
with open("temp_graph.html", "r", encoding="utf-8") as f:
|
61 |
+
graph_html = f.read()
|
|
|
|
|
62 |
|
|
|
|
|
|
|
63 |
return graph_html
|
64 |
|
65 |
+
css = """
|
66 |
+
body {
|
67 |
+
background-color: #f0f0f0;
|
68 |
+
font-family: Arial, sans-serif;
|
69 |
+
}
|
70 |
+
.container {
|
71 |
+
max-width: 1200px;
|
72 |
+
margin: 0 auto;
|
73 |
+
padding: 20px;
|
74 |
+
}
|
75 |
+
h1 {
|
76 |
+
color: #333;
|
77 |
+
text-align: center;
|
78 |
+
}
|
79 |
+
.gr-form {
|
80 |
+
background-color: white;
|
81 |
+
padding: 20px;
|
82 |
+
border-radius: 10px;
|
83 |
+
box-shadow: 0 0 10px rgba(0,0,0,0.1);
|
84 |
+
}
|
85 |
+
"""
|
86 |
|
87 |
+
with gr.Blocks(css=css) as demo:
|
88 |
+
gr.Markdown("# Visualização de Grafos Literários")
|
89 |
+
|
90 |
+
with gr.Row():
|
91 |
+
with gr.Column(scale=1):
|
92 |
+
selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
|
93 |
+
run_button = gr.Button("Visualizar Grafo", variant="primary")
|
94 |
+
|
95 |
+
with gr.Column(scale=3):
|
96 |
+
graph_output = gr.HTML()
|
97 |
+
|
98 |
def on_run_button_click(selected_location):
|
99 |
+
return run_query_and_visualize(selected_location)
|
100 |
|
101 |
run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
|
102 |
|
103 |
+
demo.launch()
|