histlearn commited on
Commit
17c9459
·
verified ·
1 Parent(s): 9a7bd07

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -62
app.py CHANGED
@@ -1,24 +1,17 @@
1
  import gradio as gr
2
  import rdflib
3
  import requests
4
- import matplotlib.pyplot as plt
5
  import networkx as nx
6
- from io import BytesIO
7
- import base64
8
 
9
- # Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
10
  def load_names_from_url(jsonld_url):
11
  response = requests.get(jsonld_url)
12
  data = response.json()
13
-
14
- names = []
15
- for item in data:
16
- if 'name' in item:
17
- names.append(item['name'])
18
-
19
- return names
20
 
21
- # Carregar nomes do arquivo JSON-LD
22
  jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
23
  names = load_names_from_url(jsonld_url)
24
 
@@ -26,78 +19,85 @@ def build_graph_from_jsonld(jsonld_url, selected_name):
26
  response = requests.get(jsonld_url)
27
  data = response.json()
28
 
29
- # Filtrar o local selecionado
30
  selected_data = next((item for item in data if item['name'] == selected_name), None)
31
 
32
  if not selected_data:
33
  return "Local não encontrado."
34
 
35
- G = nx.DiGraph()
36
 
37
- # Adicionar do Place
38
  place_id = selected_data['@id']
39
- place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
40
- G.add_node(place_id, label=place_label)
41
 
42
- # Adicionar de GeoCoordinates
43
  geo_data = selected_data['geo']
44
  geo_id = geo_data['@id']
45
- geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
46
- G.add_node(geo_id, label=geo_label)
47
- G.add_edge(place_id, geo_id, label="schema:geo")
48
 
49
- # Adicionar nós de CreativeWork
50
  for work in selected_data.get('subjectOf', []):
51
  work_id = work['@id']
52
- work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
53
- G.add_node(work_id, label=work_label)
54
- G.add_edge(place_id, work_id, label="schema:subjectOf")
55
 
56
- return G
57
-
58
- def run_query_and_visualize(selected_location, jsonld_url):
59
- G = build_graph_from_jsonld(jsonld_url, selected_location)
60
 
61
- if isinstance(G, str): # Caso de erro
62
- return G
63
 
64
- # Define posições específicas para os nós importantes
65
- pos = nx.spring_layout(G)
66
-
67
- # Desenha o gráfico usando NetworkX e Matplotlib
68
- plt.figure(figsize=(15, 10))
69
- nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
70
- nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
71
- nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
72
- nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
73
-
74
- plt.title("Resultado da Consulta", size=15)
75
- plt.axis('off')
76
 
77
- # Salva o gráfico em um arquivo
78
- buf = BytesIO()
79
- plt.savefig(buf, format='png')
80
- buf.seek(0)
81
- img_str = base64.b64encode(buf.read()).decode()
82
- graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
83
 
84
- plt.close()
85
-
86
- print("Gráfico gerado com sucesso.")
87
  return graph_html
88
 
89
- with gr.Blocks() as demo:
90
- gr.Markdown("# Visualização de Query SPARQL")
91
-
92
- with gr.Column():
93
- selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
94
- run_button = gr.Button("Visualizar Grafo")
95
-
96
- graph_output = gr.HTML()
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
 
 
 
 
 
 
 
 
 
 
 
98
  def on_run_button_click(selected_location):
99
- return run_query_and_visualize(selected_location, jsonld_url)
100
 
101
  run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
102
 
103
- demo.launch()
 
1
  import gradio as gr
2
  import rdflib
3
  import requests
 
4
  import networkx as nx
5
+ import plotly.graph_objs as go
6
+ from pyvis.network import Network
7
 
8
+ # Function to load and extract names from the JSON-LD file
9
  def load_names_from_url(jsonld_url):
10
  response = requests.get(jsonld_url)
11
  data = response.json()
12
+ return [item['name'] for item in data if 'name' in item]
 
 
 
 
 
 
13
 
14
+ # Load names from the JSON-LD file
15
  jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
16
  names = load_names_from_url(jsonld_url)
17
 
 
19
  response = requests.get(jsonld_url)
20
  data = response.json()
21
 
 
22
  selected_data = next((item for item in data if item['name'] == selected_name), None)
23
 
24
  if not selected_data:
25
  return "Local não encontrado."
26
 
27
+ net = Network(height="600px", width="100%", bgcolor="#222222", font_color="white")
28
 
29
+ # Add Place node
30
  place_id = selected_data['@id']
31
+ place_label = f"Name: {selected_data['name']}\nDescription: {selected_data['description'][:100]}..."
32
+ net.add_node(place_id, label=selected_data['name'], title=place_label, color="#00ffff")
33
 
34
+ # Add GeoCoordinates node
35
  geo_data = selected_data['geo']
36
  geo_id = geo_data['@id']
37
+ geo_label = f"Lat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nName: {geo_data['gn:name']}"
38
+ net.add_node(geo_id, label="Geo", title=geo_label, color="#ff9999")
39
+ net.add_edge(place_id, geo_id, title="schema:geo")
40
 
41
+ # Add CreativeWork nodes
42
  for work in selected_data.get('subjectOf', []):
43
  work_id = work['@id']
44
+ work_label = f"Headline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:100]}..."
45
+ net.add_node(work_id, label=work['headline'], title=work_label, color="#99ff99")
46
+ net.add_edge(place_id, work_id, title="schema:subjectOf")
47
 
48
+ net.toggle_physics(True)
49
+ net.show_buttons(filter_=['physics'])
50
+ return net
 
51
 
52
+ def run_query_and_visualize(selected_location):
53
+ net = build_graph_from_jsonld(jsonld_url, selected_location)
54
 
55
+ if isinstance(net, str): # Error case
56
+ return net
 
 
 
 
 
 
 
 
 
 
57
 
58
+ # Save the graph as HTML
59
+ net.save_graph("temp_graph.html")
60
+ with open("temp_graph.html", "r", encoding="utf-8") as f:
61
+ graph_html = f.read()
 
 
62
 
 
 
 
63
  return graph_html
64
 
65
+ css = """
66
+ body {
67
+ background-color: #f0f0f0;
68
+ font-family: Arial, sans-serif;
69
+ }
70
+ .container {
71
+ max-width: 1200px;
72
+ margin: 0 auto;
73
+ padding: 20px;
74
+ }
75
+ h1 {
76
+ color: #333;
77
+ text-align: center;
78
+ }
79
+ .gr-form {
80
+ background-color: white;
81
+ padding: 20px;
82
+ border-radius: 10px;
83
+ box-shadow: 0 0 10px rgba(0,0,0,0.1);
84
+ }
85
+ """
86
 
87
+ with gr.Blocks(css=css) as demo:
88
+ gr.Markdown("# Visualização de Grafos Literários")
89
+
90
+ with gr.Row():
91
+ with gr.Column(scale=1):
92
+ selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
93
+ run_button = gr.Button("Visualizar Grafo", variant="primary")
94
+
95
+ with gr.Column(scale=3):
96
+ graph_output = gr.HTML()
97
+
98
  def on_run_button_click(selected_location):
99
+ return run_query_and_visualize(selected_location)
100
 
101
  run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
102
 
103
+ demo.launch()