histlearn commited on
Commit
4fdd879
·
verified ·
1 Parent(s): 3add0e4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -104
app.py CHANGED
@@ -1,3 +1,13 @@
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import rdflib
3
  import requests
@@ -6,123 +16,99 @@ import networkx as nx
6
  from io import BytesIO
7
  import base64
8
 
9
- # Verificação simples da versão do Gradio no início
10
- try:
11
- import pkg_resources
12
- gradio_version = pkg_resources.get_distribution('gradio').version
13
- print(f"Gradio version: {gradio_version}")
14
- except:
15
- print("Não foi possível verificar a versão do Gradio")
16
-
17
  def load_names_from_url(jsonld_url):
18
- """Carrega e extrai os nomes do arquivo JSON-LD."""
19
- try:
20
- response = requests.get(jsonld_url)
21
- data = response.json()
22
- names = []
23
- for item in data:
24
- if 'name' in item:
25
- names.append(item['name'])
26
- return sorted(names) # Retorna nomes ordenados
27
- except Exception as e:
28
- print(f"Erro ao carregar dados: {e}")
29
- return []
 
30
 
31
  def build_graph_from_jsonld(jsonld_url, selected_name):
32
- """Constrói o grafo a partir dos dados JSON-LD."""
33
- try:
34
- response = requests.get(jsonld_url)
35
- data = response.json()
36
-
37
- selected_data = next((item for item in data if item['name'] == selected_name), None)
38
-
39
- if not selected_data:
40
- return "Local não encontrado."
41
-
42
- G = nx.DiGraph()
43
-
44
- # Adicionar nó do Place
45
- place_id = selected_data['@id']
46
- place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
47
- G.add_node(place_id, label=place_label)
48
-
49
- # Adicionar nó de GeoCoordinates
50
- geo_data = selected_data['geo']
51
- geo_id = geo_data['@id']
52
- geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
53
- G.add_node(geo_id, label=geo_label)
54
- G.add_edge(place_id, geo_id, label="schema:geo")
55
-
56
- # Adicionar nós de CreativeWork
57
- for work in selected_data.get('subjectOf', []):
58
- work_id = work['@id']
59
- work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
60
- G.add_node(work_id, label=work_label)
61
- G.add_edge(place_id, work_id, label="schema:subjectOf")
62
-
63
- return G
64
- except Exception as e:
65
- return f"Erro ao construir grafo: {e}"
66
 
67
  def run_query_and_visualize(selected_location, jsonld_url):
68
- """Executa a consulta e visualiza o resultado."""
69
- try:
70
- if not selected_location:
71
- return '<div style="text-align: center; padding: 20px;">Selecione um local para visualizar o grafo</div>'
72
-
73
- G = build_graph_from_jsonld(jsonld_url, selected_location)
74
 
75
- if isinstance(G, str): # Caso de erro
76
- return f'<div style="color: red; text-align: center; padding: 20px;">{G}</div>'
77
-
78
- plt.figure(figsize=(15, 10))
79
- pos = nx.spring_layout(G, k=1, iterations=50)
80
-
81
- nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
82
- nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
83
- nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9)
84
- nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9)
 
 
85
 
86
- plt.title(f"Grafo para: {selected_location}", size=15)
87
- plt.axis('off')
88
-
89
- buf = BytesIO()
90
- plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
91
- buf.seek(0)
92
- img_str = base64.b64encode(buf.read()).decode()
93
- plt.close()
 
 
 
94
 
95
- return f'<img src="data:image/png;base64,{img_str}" style="width: 100%; max-width: 1200px;"/>'
96
- except Exception as e:
97
- return f'<div style="color: red; text-align: center; padding: 20px;">Erro ao gerar visualização: {e}</div>'
98
 
99
- # URL do arquivo JSON-LD
100
- jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
101
 
102
- # Carrega os nomes iniciais
103
- names = load_names_from_url(jsonld_url)
 
104
 
105
- # Interface Gradio
106
- with gr.Blocks(css="footer {display: none}") as demo:
107
- gr.Markdown("# Visualização de Grafos de Localidades")
108
- gr.Markdown("Selecione um local para visualizar seu grafo de relacionamentos e citações.")
109
 
110
- with gr.Column():
111
- selected_location = gr.Dropdown(
112
- choices=names,
113
- label="Selecione o Local",
114
- value=names[0] if names else None
115
- )
116
- view_button = gr.Button("Visualizar Grafo", variant="primary")
117
- result_html = gr.HTML(
118
- value='<div style="text-align: center; padding: 20px;">Selecione um local e clique em "Visualizar Grafo"</div>'
119
- )
120
 
121
- view_button.click(
122
- fn=run_query_and_visualize,
123
- inputs=[selected_location, gr.Textbox(value=jsonld_url, visible=False)],
124
- outputs=result_html
125
- )
126
 
127
  if __name__ == "__main__":
128
  demo.launch()
 
1
+ import subprocess
2
+ import pkg_resources
3
+ import sys
4
+
5
+ # Atualiza o Gradio silenciosamente antes de importar
6
+ try:
7
+ subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'gradio'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
8
+ except:
9
+ pass
10
+
11
  import gradio as gr
12
  import rdflib
13
  import requests
 
16
  from io import BytesIO
17
  import base64
18
 
19
+ # Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
 
 
 
 
 
 
 
20
  def load_names_from_url(jsonld_url):
21
+ response = requests.get(jsonld_url)
22
+ data = response.json()
23
+
24
+ names = []
25
+ for item in data:
26
+ if 'name' in item:
27
+ names.append(item['name'])
28
+
29
+ return names
30
+
31
+ # Carregar nomes do arquivo JSON-LD
32
+ jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
33
+ names = load_names_from_url(jsonld_url)
34
 
35
  def build_graph_from_jsonld(jsonld_url, selected_name):
36
+ response = requests.get(jsonld_url)
37
+ data = response.json()
38
+
39
+ # Filtrar o local selecionado
40
+ selected_data = next((item for item in data if item['name'] == selected_name), None)
41
+
42
+ if not selected_data:
43
+ return "Local não encontrado."
44
+
45
+ G = nx.DiGraph()
46
+
47
+ # Adicionar nó do Place
48
+ place_id = selected_data['@id']
49
+ place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
50
+ G.add_node(place_id, label=place_label)
51
+
52
+ # Adicionar nó de GeoCoordinates
53
+ geo_data = selected_data['geo']
54
+ geo_id = geo_data['@id']
55
+ geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
56
+ G.add_node(geo_id, label=geo_label)
57
+ G.add_edge(place_id, geo_id, label="schema:geo")
58
+
59
+ # Adicionar nós de CreativeWork
60
+ for work in selected_data.get('subjectOf', []):
61
+ work_id = work['@id']
62
+ work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
63
+ G.add_node(work_id, label=work_label)
64
+ G.add_edge(place_id, work_id, label="schema:subjectOf")
65
+
66
+ return G
 
 
 
67
 
68
  def run_query_and_visualize(selected_location, jsonld_url):
69
+ G = build_graph_from_jsonld(jsonld_url, selected_location)
 
 
 
 
 
70
 
71
+ if isinstance(G, str): # Caso de erro
72
+ return G
73
+
74
+ # Define posições específicas para os nós importantes
75
+ pos = nx.spring_layout(G)
76
+
77
+ # Desenha o gráfico usando NetworkX e Matplotlib
78
+ plt.figure(figsize=(15, 10))
79
+ nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
80
+ nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
81
+ nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
82
+ nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
83
 
84
+ plt.title("Resultado da Consulta", size=15)
85
+ plt.axis('off')
86
+
87
+ # Salva o gráfico em um arquivo
88
+ buf = BytesIO()
89
+ plt.savefig(buf, format='png')
90
+ buf.seek(0)
91
+ img_str = base64.b64encode(buf.read()).decode()
92
+ graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
93
+
94
+ plt.close()
95
 
96
+ print("Gráfico gerado com sucesso.")
97
+ return graph_html
 
98
 
99
+ with gr.Blocks() as demo:
100
+ gr.Markdown("# Visualização de Query SPARQL")
101
 
102
+ with gr.Column():
103
+ selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
104
+ run_button = gr.Button("Visualizar Grafo")
105
 
106
+ graph_output = gr.HTML()
 
 
 
107
 
108
+ def on_run_button_click(selected_location):
109
+ return run_query_and_visualize(selected_location, jsonld_url)
 
 
 
 
 
 
 
 
110
 
111
+ run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
 
 
 
 
112
 
113
  if __name__ == "__main__":
114
  demo.launch()