import gradio as gr import rdflib import requests import matplotlib.pyplot as plt import networkx as nx from io import BytesIO import base64 # Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL def load_names_from_url(jsonld_url): response = requests.get(jsonld_url) data = response.json() names = [] for item in data: if 'name' in item: names.append(item['name']) return names # Carregar nomes do arquivo JSON-LD jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld' names = load_names_from_url(jsonld_url) def run_query_and_visualize(qtext, jsonld_url): print("Executando consulta SPARQL...") print(f"Consulta SPARQL: {qtext}") # Carrega o arquivo JSON-LD g = rdflib.Graph() g.parse(jsonld_url, format="json-ld") print("Consulta SPARQL carregada...") # Executa a consulta SPARQL qres = g.query(qtext) # Cria o gráfico de rede G = nx.DiGraph() print("Processando resultados da consulta...") # Processa os resultados da consulta for row in qres: s, p, o = row G.add_node(str(s), label=str(s).split('/')[-1]) # Usar o último segmento da URI como rótulo G.add_node(str(o), label=str(o).split('/')[-1]) G.add_edge(str(s), str(o), label=str(p).split('/')[-1]) # Desenha o gráfico usando NetworkX e Matplotlib pos = { "Adem": (0, 0.6), "Adem-geo": (-0.4, -0.3), "Adem-obra": (0.4, -0.1) } plt.figure(figsize=(10, 8)) nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9) nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray') nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black") nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red") plt.xlim(-1, 1) plt.ylim(-1, 1) plt.title("Resultado da Consulta SPARQL", size=15) plt.axis('off') # Salva o gráfico em um arquivo buf = BytesIO() plt.savefig(buf, format='png') buf.seek(0) img_str = base64.b64encode(buf.read()).decode() graph_html = f'' plt.close() print("Gráfico gerado com sucesso.") return graph_html def update_query(selected_location): return f""" PREFIX schema: SELECT * WHERE {{ ?s schema:name "{selected_location}" . ?s ?p ?o . }} """ with gr.Blocks() as demo: gr.Markdown("# Visualização de Query SPARQL") with gr.Column(): selected_location = gr.Dropdown(choices=names, label="Selecione o Local") query_input = gr.Textbox(label="Consulta SPARQL", value=update_query(names[0]) if names else "", lines=10) run_button = gr.Button("Executar Consulta") graph_output = gr.HTML() def on_location_change(loc): return update_query(loc) selected_location.change(fn=on_location_change, inputs=selected_location, outputs=query_input) def on_run_button_click(query): return run_query_and_visualize(query, jsonld_url) run_button.click(fn=on_run_button_click, inputs=[query_input], outputs=graph_output) demo.launch()