import gradio as gr
import rdflib
import requests
import matplotlib.pyplot as plt
import networkx as nx
from io import BytesIO
import base64
# Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
def load_names_from_url(jsonld_url):
response = requests.get(jsonld_url)
data = response.json()
names = []
for item in data:
if 'name' in item:
names.append(item['name'])
return names
# Carregar nomes do arquivo JSON-LD
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
names = load_names_from_url(jsonld_url)
def run_query_and_visualize(qtext, jsonld_url):
print("Executando consulta SPARQL...")
print(f"Consulta SPARQL: {qtext}")
# Carrega o arquivo JSON-LD
g = rdflib.Graph()
g.parse(jsonld_url, format="json-ld")
print("Consulta SPARQL carregada...")
# Executa a consulta SPARQL
qres = g.query(qtext)
# Cria o gráfico de rede
G = nx.DiGraph()
print("Processando resultados da consulta...")
# Processa os resultados da consulta
for row in qres:
s, p, o = row
G.add_node(str(s), label=str(s).split('/')[-1]) # Usar o último segmento da URI como rótulo
G.add_node(str(o), label=str(o).split('/')[-1])
G.add_edge(str(s), str(o), label=str(p).split('/')[-1])
# Desenha o gráfico usando NetworkX e Matplotlib
pos = {
"Adem": (0, 0.6),
"Adem-geo": (-0.4, -0.3),
"Adem-obra": (0.4, -0.1)
}
plt.figure(figsize=(10, 8))
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
plt.xlim(-1, 1)
plt.ylim(-1, 1)
plt.title("Resultado da Consulta SPARQL", size=15)
plt.axis('off')
# Salva o gráfico em um arquivo
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode()
graph_html = f'
'
plt.close()
print("Gráfico gerado com sucesso.")
return graph_html
def update_query(selected_location):
return f"""
PREFIX schema:
SELECT * WHERE {{
?s schema:name "{selected_location}" .
?s ?p ?o .
}}
"""
with gr.Blocks() as demo:
gr.Markdown("# Visualização de Query SPARQL")
with gr.Column():
selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
query_input = gr.Textbox(label="Consulta SPARQL", value=update_query(names[0]) if names else "", lines=10)
run_button = gr.Button("Executar Consulta")
graph_output = gr.HTML()
def on_location_change(loc):
return update_query(loc)
selected_location.change(fn=on_location_change, inputs=selected_location, outputs=query_input)
def on_run_button_click(query):
return run_query_and_visualize(query, jsonld_url)
run_button.click(fn=on_run_button_click, inputs=[query_input], outputs=graph_output)
demo.launch()