Spaces:
Sleeping
Sleeping
File size: 8,734 Bytes
0a90ad2 1f01146 0a90ad2 7fa3164 0a90ad2 7fa3164 1f01146 f086ab1 1f01146 15d3e2a 1f01146 04ab3a5 1f01146 15d3e2a 1f01146 15d3e2a 1f01146 15d3e2a 1f01146 0817777 15d3e2a 1f01146 0817777 15d3e2a 1f01146 15d3e2a 1f01146 0817777 533ca79 0817777 533ca79 0817777 533ca79 1f01146 533ca79 0817777 1f01146 15d3e2a 533ca79 0817777 533ca79 1f01146 6a5ddf1 f086ab1 6a5ddf1 15d3e2a f086ab1 823bda9 1f01146 04901f2 f086ab1 15d3e2a f086ab1 e6864f6 15d3e2a f086ab1 e6864f6 4a3f639 f086ab1 e6864f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
import pandas as pd
import numpy as np
import re
import os
import matplotlib.pyplot as plt
from datetime import timedelta
from fpdf import FPDF
from typing import Tuple, Dict, List
import logging
import warnings
warnings.filterwarnings('ignore')
# Configuração de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
class DataProcessor:
@staticmethod
def parse_duration(duration_str: str) -> timedelta:
try:
h, m, s = map(int, duration_str.split(':'))
return timedelta(hours=h, minutes=m, seconds=s)
except:
return timedelta(0)
@staticmethod
def format_timedelta(td: timedelta) -> str:
total_seconds = int(td.total_seconds())
hours, remainder = divmod(total_seconds, 3600)
minutes, seconds = divmod(remainder, 60)
if hours > 0:
return f"{hours}h {minutes}min {seconds}s"
elif minutes > 0:
return f"{minutes}min {seconds}s"
return f"{seconds}s"
@staticmethod
def normalize_html_to_csv(input_html_path: str, output_csv_path: str) -> None:
try:
html_data = pd.read_html(input_html_path)
data = html_data[0]
data.to_csv(output_csv_path, index=False, encoding='utf-8-sig')
logging.info(f"HTML normalizado com sucesso: {output_csv_path}")
except Exception as e:
logging.error(f"Erro ao normalizar HTML: {str(e)}")
raise
@staticmethod
def normalize_excel_to_csv(input_excel_path: str, output_csv_path: str) -> None:
try:
excel_data = pd.read_excel(input_excel_path)
unnecessary_columns = [col for col in excel_data.columns if 'Unnamed' in str(col)]
if unnecessary_columns:
excel_data = excel_data.drop(columns=unnecessary_columns)
excel_data.to_csv(output_csv_path, index=False, encoding='utf-8-sig')
logging.info(f"Excel normalizado com sucesso: {output_csv_path}")
except Exception as e:
logging.error(f"Erro ao normalizar Excel: {str(e)}")
raise
class StudentAnalyzer:
def __init__(self, tarefas_df: pd.DataFrame, alunos_df: pd.DataFrame):
self.tarefas_df = tarefas_df
self.alunos_df = alunos_df
self.processor = DataProcessor()
def prepare_data(self) -> pd.DataFrame:
self.tarefas_df.columns = self.tarefas_df.columns.str.strip()
self.alunos_df.columns = self.alunos_df.columns.str.strip()
required_columns = ['Aluno', 'Nota', 'Duração']
if not all(col in self.tarefas_df.columns for col in required_columns):
raise ValueError("Colunas obrigatórias não encontradas no arquivo de tarefas")
self.tarefas_df['Duração'] = self.tarefas_df['Duração'].apply(self.processor.parse_duration)
return self.match_students()
def match_students(self) -> pd.DataFrame:
def generate_aluno_pattern(ra, dig_ra):
ra_str = str(ra).zfill(9)
return f"{ra_str[1]}{ra_str[2:]}{dig_ra}-sp".lower()
self.alunos_df['Aluno_Pattern'] = self.alunos_df.apply(
lambda row: generate_aluno_pattern(row['RA'], row['Dig. RA']), axis=1
)
def extract_pattern(nome):
if isinstance(nome, str):
match = re.search(r'\d+.*', nome.lower())
return match.group(0) if match else None
return None
self.tarefas_df['Aluno_Pattern'] = self.tarefas_df['Aluno'].apply(extract_pattern)
return self.calculate_metrics()
def calculate_metrics(self) -> pd.DataFrame:
metrics_df = pd.DataFrame()
for _, aluno in self.alunos_df.iterrows():
aluno_pattern = aluno['Aluno_Pattern']
aluno_tarefas = self.tarefas_df[self.tarefas_df['Aluno_Pattern'] == aluno_pattern]
if not aluno_tarefas.empty:
duracao_total = aluno_tarefas['Duração'].sum()
acertos_total = aluno_tarefas['Nota'].sum()
metrics = {
'Nome do Aluno': aluno['Nome do Aluno'],
'Tarefas Completadas': len(aluno_tarefas),
'Acertos Absolutos': acertos_total,
'Total Tempo': str(duracao_total),
'Tempo Médio por Tarefa': str(duracao_total / len(aluno_tarefas)),
'Eficiência': (acertos_total / duracao_total.total_seconds() * 3600)
}
metrics_df = pd.concat([metrics_df, pd.DataFrame([metrics])], ignore_index=True)
return metrics_df.sort_values('Acertos Absolutos', ascending=False)
class ReportGenerator:
def __init__(self, data: pd.DataFrame):
self.data = data
self.stats = self.calculate_statistics()
self.data['Nível'] = self.data['Acertos Absolutos'].apply(self.classify_performance)
def classify_performance(self, acertos):
if acertos >= 10:
return 'Avançado'
elif acertos >= 5:
return 'Intermediário'
else:
return 'Necessita Atenção'
def calculate_statistics(self) -> Dict:
basic_stats = {
'media_acertos': float(self.data['Acertos Absolutos'].mean()),
'desvio_padrao': float(self.data['Acertos Absolutos'].std()),
'mediana_acertos': float(self.data['Acertos Absolutos'].median()),
'total_alunos': len(self.data),
'media_tarefas': float(self.data['Tarefas Completadas'].mean()),
'media_tempo': str(pd.to_timedelta(self.data['Total Tempo']).mean())
}
top_students = self.data.nlargest(3, 'Acertos Absolutos')[
['Nome do Aluno', 'Acertos Absolutos']
].values.tolist()
basic_stats['top_performers'] = top_students
efficient_students = self.data.nlargest(3, 'Eficiência')[
['Nome do Aluno', 'Eficiência', 'Acertos Absolutos']
].values.tolist()
basic_stats['most_efficient'] = efficient_students
return basic_stats
def generate_graphs(self) -> List[plt.Figure]:
graphs = []
# Gráficos omitidos para compactar. Retorne aqui se desejar.
return graphs
def generate_pdf(self, output_path: str, graphs: List[plt.Figure]) -> None:
pdf = FPDF() # Adicione aqui os gráficos.
pdf.output(output_path)
def process_files(html_file, excel_files) -> Tuple[str, str, str]:
temp_dir = "temp_files"
os.makedirs(temp_dir, exist_ok=True)
# Lógica principal omitida para espaço.
return "Relatório gerado"
# Interface Gradio
theme = gr.themes.Default(
primary_hue="blue",
secondary_hue="gray",
font=["Arial", "sans-serif"],
font_mono=["Courier New", "monospace"],
)
with gr.Blocks(theme=theme) as interface:
gr.Markdown("""
# Sistema de Análise de Desempenho Acadêmico
Este sistema analisa o desempenho dos alunos e gera um relatório detalhado com:
- Análise estatística completa
- Visualizações gráficas
- Recomendações personalizadas
""")
with gr.Row():
with gr.Column():
gr.Markdown("## Lista de Alunos")
html_file = gr.File(
label="Arquivo HTML com lista de alunos (.htm)",
type="binary",
file_types=[".htm", ".html"]
)
with gr.Column():
gr.Markdown("## Relatórios de Tarefas")
excel_files = gr.Files(
label="Arquivos Excel com dados das tarefas (.xlsx)",
type="binary",
file_count="multiple",
file_types=[".xlsx"]
)
with gr.Row():
generate_btn = gr.Button("Gerar Relatório", variant="primary", size="lg")
with gr.Row():
output_html = gr.HTML()
with gr.Row():
with gr.Column():
download_html_btn = gr.File(
label="Download Relatório HTML",
type="filepath",
interactive=False
)
with gr.Column():
download_pdf_btn = gr.File(
label="Download Relatório PDF",
type="filepath",
interactive=False
)
generate_btn.click(
fn=process_files,
inputs=[html_file, excel_files],
outputs=[output_html, download_html_btn, download_pdf_btn]
)
if __name__ == "__main__":
interface.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |