File size: 5,135 Bytes
a7c7b3c
 
 
 
 
a591b90
a7c7b3c
 
a591b90
a9d03e7
a7c7b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a591b90
a7c7b3c
a591b90
a7c7b3c
a591b90
a7c7b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a591b90
a7c7b3c
 
 
 
 
 
 
 
 
a591b90
83588c4
 
 
 
 
a7c7b3c
 
 
 
 
a591b90
 
a7c7b3c
 
 
 
 
 
 
83588c4
 
 
a7c7b3c
a591b90
a7c7b3c
 
 
83588c4
a7c7b3c
a591b90
a7c7b3c
 
 
 
83588c4
 
 
 
 
 
 
 
 
 
 
 
 
 
a7c7b3c
83588c4
a7c7b3c
 
 
 
 
a591b90
a7c7b3c
 
 
83588c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.text_splitter import SpacyTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import PromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI

template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
Tips: Make sure to cite your sources, and use the exact words from the context.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate.from_template(template)


class RAGDemo(object):
    def __init__(self):
        self.embedding = None
        self.vector_db = None
        self.chat_model = None

    def _init_chat_model(self, model_name, api_key):
        if not api_key:
            gradio.Error("Please enter model API key.")
            return
        if 'glm' in model_name:
            gradio.Error("GLM is not supported yet.")
        elif 'gemini' in model_name:
            self.chat_model = ChatGoogleGenerativeAI(
                google_api_key=api_key,
                model='gemini-pro'
            )

    def _init_embedding(self, embedding_model_name, api_key):
        if not api_key:
            gradio.Error("Please enter embedding API key.")
            return
        if 'glm' in embedding_model_name:
            gradio.Error("GLM is not supported yet.")
        else:
            self.embedding = HuggingFaceInferenceAPIEmbeddings(
                api_key=api_key, model_name=embedding_model_name
            )

    def _build_vector_db(self, file_path):
        if not file_path:
            gradio.Error("Please enter vector database file path.")
            return
        gr.Info("Building vector database...")
        loader = PyPDFLoader(file_path)
        pages = loader.load()

        text_splitter = SpacyTextSplitter(chunk_size=500, chunk_overlap=50)
        docs = text_splitter.split_documents(pages)

        self.vector_db = Chroma.from_documents(
            documents=docs, embedding=self.embedding
        )
        gr.Info("Vector database built successfully.")

    def _init_settings(self, model_name, api_key, embedding_model, embedding_api_key, data_file):
        self._init_chat_model(model_name, api_key)
        self._init_embedding(embedding_model, embedding_api_key)
        self._build_vector_db(data_file)

    def _retrieval_qa(self, input_text):
        basic_qa = RetrievalQA.from_chain_type(
            self.chat_model,
            retriever=self.vector_db.as_retriever(),
            chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
            verbose=True,
        )
        return basic_qa.invoke(input_text)

    def __call__(self):
        with gr.Blocks() as demo:
            gr.Markdown("# RAG Demo\n\nbase on the [RAG learning note](https://www.jianshu.com/p/9792f1e6c3f9) and "
                        "[rag-practice](https://github.com/hiwei93/rag-practice/tree/main)")
            with gr.Tab("Settings"):
                with gr.Row():
                    with gr.Column():
                        model_name = gr.Dropdown(
                            choices=['gemini-1.0-pro'],
                            value='glm-3-turbo',
                            label="model"
                        )
                        api_key = gr.Textbox(placeholder="your api key for LLM", label="api key")
                        embedding_model = gr.Dropdown(
                            choices=['sentence-transformers/all-MiniLM-L6-v2',
                                     'intfloat/multilingual-e5-large'],
                            value="sentence-transformers/all-MiniLM-L6-v2",
                            label="embedding model"
                        )
                        embedding_api_key = gr.Textbox(placeholder="your api key for embedding", label="embedding api key")
                    with gr.Column():
                        data_file = gr.File(file_count='single', label="pdf file")
                        initial_btn = gr.Button("submit")
            with gr.Tab("RAG"):
                with gr.Row():
                    with gr.Column():
                        input_text = gr.Textbox(placeholder="input your question...", label="input")
                        submit_btn = gr.Button("submit")
                    with gr.Column():
                        output = gr.TextArea(label="answer")
            initial_btn.click(
                self._init_settings,
                inputs=[model_name, api_key, embedding_model, embedding_api_key, data_file]
            )

            submit_btn.click(
                self._retrieval_qa,
                inputs=input_text,
                outputs=output,
            )
        return demo


app = RAGDemo()
app().launch(debug=True)