File size: 16,930 Bytes
5263bd3
 
 
 
 
 
4a7c026
 
40fe6da
5263bd3
8c49ca8
 
 
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdd8a58
 
8c49ca8
0e7de0c
 
8c49ca8
cdd8a58
 
40fe6da
cdd8a58
0e7de0c
40fe6da
6c88c65
 
40fe6da
8c49ca8
40fe6da
 
5263bd3
8c49ca8
 
 
870813f
8c49ca8
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49ca8
 
 
 
 
6c88c65
8c49ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7de0c
8c49ca8
0e7de0c
 
 
 
 
8c49ca8
 
0e7de0c
 
8c49ca8
0e7de0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49ca8
0e7de0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49ca8
0e7de0c
 
 
 
 
 
8c49ca8
0e7de0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49ca8
0e7de0c
 
8c49ca8
0e7de0c
 
 
 
 
 
 
 
6c88c65
 
8c49ca8
 
0e7de0c
 
 
 
 
 
 
 
8c49ca8
 
 
 
 
0e7de0c
 
 
8c49ca8
 
0e7de0c
8c49ca8
0e7de0c
 
 
8c49ca8
 
0e7de0c
8c49ca8
0e7de0c
 
 
 
 
 
 
 
8c49ca8
0e7de0c
 
 
8c49ca8
0e7de0c
 
 
 
8c49ca8
0e7de0c
 
 
 
 
 
8c49ca8
6c88c65
 
 
8c49ca8
 
 
 
63d967d
8c49ca8
0e7de0c
 
8c49ca8
 
0e7de0c
 
 
 
 
8c49ca8
0e7de0c
63d967d
0e7de0c
 
 
 
 
 
870813f
723da6d
0e7de0c
723da6d
 
 
0e7de0c
723da6d
 
0e7de0c
 
 
 
 
 
723da6d
0e7de0c
 
 
 
 
 
 
 
 
 
 
 
 
6a3b036
723da6d
0e7de0c
 
 
 
 
 
 
9d48283
 
723da6d
 
 
0e7de0c
 
8c49ca8
0e7de0c
17c9ecb
0e7de0c
 
 
 
 
 
 
 
 
8c49ca8
0e7de0c
 
 
 
 
 
 
8c49ca8
0e7de0c
 
4a7c026
0e7de0c
6c88c65
0e7de0c
 
 
 
 
 
 
 
 
6c88c65
0e7de0c
 
 
6c88c65
0e7de0c
 
6c88c65
8c49ca8
0e7de0c
 
8c49ca8
 
0e7de0c
8c49ca8
 
 
 
0e7de0c
 
 
 
 
 
 
8c49ca8
 
0e7de0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723da6d
0e7de0c
 
 
 
 
 
723da6d
5263bd3
8c49ca8
 
 
0e7de0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263bd3
723da6d
0e7de0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image

###############################################################################
# Model Definition
###############################################################################
class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)
    
    def get_feature_importance(self, x):
        """
        Calculate gradient-based feature importance, specifically for the 
        'human' class (index=1) by computing gradient of that probability wrt x.
        """
        x.requires_grad_(True)
        output = self.network(x)
        probs = torch.softmax(output, dim=1)
        
        # Probability of 'human' class (index=1)
        human_prob = probs[..., 1]
        if x.grad is not None:
            x.grad.zero_()
        human_prob.backward()
        importance = x.grad  # shape: (batch_size, n_features)
        
        return importance, float(human_prob)

###############################################################################
# Utility Functions
###############################################################################
def parse_fasta(text):
    """Parses text input in FASTA format into a list of (header, sequence)."""
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """Convert a single nucleotide sequence to a k-mer frequency vector."""
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1

    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec = vec / total_kmers  # normalize frequencies

    return vec


###############################################################################
# Visualization
###############################################################################
def create_shap_waterfall_plot(important_kmers, all_kmer_importance, human_prob, title):
    """
    Create a SHAP-like waterfall plot:
      - Start at baseline = 0.5
      - Add a bar for "Other" which is the combined effect of all less-important k-mers
      - Then apply each of the top k-mers in descending order of absolute importance
      - Show final predicted human probability as the endpoint
    """

    # 1) Sort 'important_kmers' by absolute impact descending
    sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)

    # 2) Compute the total effect of "other" k-mers
    #    We have 256 total features. We selected top 10. Sum the rest.
    top_ids = set([km['idx'] for km in sorted_kmers])
    other_contributions = []
    for i, val in enumerate(all_kmer_importance):
        if i not in top_ids:
            other_contributions.append(val)
    # sum up those "other" contributions
    other_sum = np.sum(other_contributions)
    # The "impact" for "other" will be the absolute value, direction depends on sign
    other_impact = float(abs(other_sum))
    other_direction = "human" if other_sum > 0 else "non-human"

    # 3) Build a list of all bars: first "other", then each top k-mer
    # Each bar needs: name, raw_contribution_value
    # We'll store (label, contribution). The sign indicates direction.
    bars = []
    bars.append(("Other", other_sum))  # lumps the leftover k-mers

    for km in sorted_kmers:
        # We re-inject the sign on the raw gradient
        # (We stored only the absolute in "impact," so let's create a signed value)
        signed_val = km['impact'] if km['direction'] == 'human' else -km['impact']
        bars.append((km['kmer'], signed_val))

    # 4) Waterfall plot data:
    # We'll accumulate partial sums from baseline=0.5
    baseline = 0.5
    running_val = baseline
    x_labels = []
    y_vals = []
    bar_colors = []

    # We'll use green for positive contributions (pushing toward 'human'),
    # red for negative contributions (pushing away from 'human')
    for (label, contrib) in bars:
        x_labels.append(label)
        # new value after adding this contribution
        new_val = running_val + (0.05 * contrib)  
        # ^ scaled by 0.05 for better display. Adjust as desired.

        y_vals.append((running_val, new_val))
        running_val = new_val
        if contrib >= 0:
            bar_colors.append("green")
        else:
            bar_colors.append("red")

    final_prob = running_val
    # Final point is the model's predicted probability (not always exact, but this is a shap-like idea).
    # If we want to forcibly ensure final_prob = human_prob, we could do:
    #   correction = human_prob - running_val
    #   running_val += correction
    # but for now let's keep the "waterfall" purely additive from the gradient.

    # Let's plot:
    fig, ax = plt.subplots(figsize=(10, 6))
    
    # We'll create the bars manually
    x_positions = np.arange(len(x_labels))
    last_end = baseline

    for i, ((start_val, end_val), color) in enumerate(zip(y_vals, bar_colors)):
        # The bar's height is the difference
        height = end_val - start_val
        ax.bar(i, height, bottom=start_val, color=color, edgecolor='black', alpha=0.7)
        ax.text(i, (start_val + end_val) / 2, f"{height:+.3f}", ha='center', va='center', color='white', fontsize=8)

    ax.axhline(y=baseline, color='black', linestyle='--', linewidth=1)
    ax.set_xticks(x_positions)
    ax.set_xticklabels(x_labels, rotation=45, ha='right')
    ax.set_ylim(0, 1)
    ax.set_ylabel("Running Probability (Human)")
    ax.set_title(f"SHAP-like Waterfall — Final Probability: {final_prob:.3f} (Model Probability: {human_prob:.3f})")

    plt.tight_layout()
    return fig

def create_frequency_sigma_plot(important_kmers, title):
    """Creates a bar plot of the top k-mers (by importance) showing frequency (%) and σ from mean."""
    # Sort by absolute impact
    sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
    kmers = [k["kmer"] for k in sorted_kmers]
    frequencies = [k["occurrence"] for k in sorted_kmers]  # in %
    sigmas = [k["sigma"] for k in sorted_kmers]
    directions = [k["direction"] for k in sorted_kmers]
    
    x = np.arange(len(kmers))
    width = 0.4

    fig, ax_bar = plt.subplots(figsize=(10, 6))

    # Bar for frequency
    bars_freq = ax_bar.bar(
        x - width/2, frequencies, width, alpha=0.7,
        color=["green" if d=="human" else "red" for d in directions],
        label="Frequency (%)"
    )
    ax_bar.set_ylabel("Frequency (%)")
    ax_bar.set_ylim(0, max(frequencies) * 1.2 if frequencies else 1)

    # Twin axis for σ
    ax_bar_twin = ax_bar.twinx()
    bars_sigma = ax_bar_twin.bar(
        x + width/2, sigmas, width, alpha=0.5, color="gray", label="σ from Mean"
    )
    ax_bar_twin.set_ylabel("Standard Deviations (σ)")

    ax_bar.set_title(f"Frequency & σ from Mean for Top k-mers — {title}")
    ax_bar.set_xticks(x)
    ax_bar.set_xticklabels(kmers, rotation=45, ha='right')

    # Combined legend
    lines1, labels1 = ax_bar.get_legend_handles_labels()
    lines2, labels2 = ax_bar_twin.get_legend_handles_labels()
    ax_bar.legend(lines1 + lines2, labels1 + labels2, loc="upper right")

    plt.tight_layout()
    return fig

def create_importance_bar_plot(important_kmers, title):
    """
    Create a simple bar chart showing the absolute gradient magnitude 
    for the top k-mers, sorted descending.
    """
    sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
    kmers = [k['kmer'] for k in sorted_kmers]
    impacts = [k['impact'] for k in sorted_kmers]
    directions = [k["direction"] for k in sorted_kmers]

    x = np.arange(len(kmers))

    fig, ax = plt.subplots(figsize=(10, 6))
    bar_colors = ["green" if d=="human" else "red" for d in directions]

    ax.bar(x, impacts, color=bar_colors, alpha=0.7)
    ax.set_xticks(x)
    ax.set_xticklabels(kmers, rotation=45, ha='right')
    ax.set_title(f"Absolute Feature Importance (Top k-mers) — {title}")
    ax.set_ylabel("Gradient Magnitude")
    ax.grid(axis="y", alpha=0.3)

    plt.tight_layout()
    return fig


###############################################################################
# Prediction Function
###############################################################################
def predict(file_obj):
    """
    Main function for Gradio:
      1. Reads the uploaded FASTA file or text.
      2. Loads the model and scaler.
      3. Generates predictions, probabilities, and top k-mers.
      4. Returns multiple outputs:
         - A textual summary (Markdown).
         - Waterfall plot.
         - Frequency & sigma plot.
         - Absolute importance bar plot.
    """
    # 0. Basic file read
    if file_obj is None:
        return (
            "Please upload a FASTA file.",
            None,
            None,
            None
        )
    
    try:
        # If user provided raw text, use that
        if isinstance(file_obj, str):
            text = file_obj
        else:
            # If user uploaded a file, decode it
            text = file_obj.decode('utf-8')
    except Exception as e:
        return (
            f"Error reading file: {str(e)}",
            None,
            None,
            None
        )

    # 1. Parse FASTA
    sequences = parse_fasta(text)
    if len(sequences) == 0:
        return (
            "No valid FASTA sequences found. Please check your input.",
            None,
            None,
            None
        )
    # We’ll just classify the first sequence for demonstration
    header, seq = sequences[0]

    # 2. Create k-mer vector & load model
    k = 4
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        # Prepare raw freq vector & scale
        raw_freq_vector = sequence_to_kmer_vector(seq, k=k)
        
        # Load model & scaler
        model = VirusClassifier(input_shape=4**k).to(device)
        state_dict = torch.load('model.pt', map_location=device)
        model.load_state_dict(state_dict)
        scaler = joblib.load('scaler.pkl')
        model.eval()

        scaled_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
        X_tensor = torch.FloatTensor(scaled_vector).to(device)

        # 3. Inference
        with torch.no_grad():
            logits = model(X_tensor)
            probs = torch.softmax(logits, dim=1)
        human_prob = float(probs[0][1])
        non_human_prob = float(probs[0][0])
        pred_class = 1 if human_prob >= non_human_prob else 0
        pred_label = "human" if pred_class == 1 else "non-human"
        confidence = float(max(probs[0]))

        # 4. Feature importance
        importance, hum_prob_grad = model.get_feature_importance(X_tensor)
        # shape: [1, 256]
        kmer_importances = importance[0].cpu().numpy()
        
        # We’ll store them as a dictionary: index -> (k-mer, importance)
        # Build up a dict for k-mer strings
        kmers_list = [''.join(p) for p in product("ACGT", repeat=k)]
        kmer_dict = {km: i for i, km in enumerate(kmers_list)}

        # 5. Get the top 10 k-mers by absolute importance
        abs_importance = np.abs(kmer_importances)
        top_k = 10
        top_idxs = np.argsort(abs_importance)[-top_k:][::-1]  # descending
        important_kmers = []
        for idx in top_idxs:
            # Find the k-mer by index
            kmer_str = kmers_list[idx]
            # direction
            direction = "human" if kmer_importances[idx] > 0 else "non-human"
            # frequency in % from raw_freq_vector
            freq_percent = float(raw_freq_vector[idx] * 100)
            # sigma from scaled vector
            sigma_val = float(scaled_vector[0][idx])
            important_kmers.append({
                'kmer': kmer_str,
                'idx': idx,
                'impact': float(abs_importance[idx]),
                'direction': direction,
                'occurrence': freq_percent,
                'sigma': sigma_val
            })

        # 6. Text Summary
        summary_text = (
            f"**Sequence Header**: {header}\n\n"
            f"**Predicted Label**: {pred_label}\n"
            f"**Confidence**: {confidence:.4f}\n\n"
            f"**Human Probability**: {human_prob:.4f}\n"
            f"**Non-human Probability**: {non_human_prob:.4f}\n\n"
            "### Most Influential k-mers:\n"
        )
        for km in important_kmers:
            direction_text = f"(pushes toward {km['direction']})"
            freq_text = f"{km['occurrence']:.2f}%"
            sigma_text = f"{abs(km['sigma']):.2f}σ " + ("above" if km['sigma']>0 else "below") + " mean"
            summary_text += (
                f"- **{km['kmer']}**: impact={km['impact']:.4f}, {direction_text}, "
                f"occurrence={freq_text}, ({sigma_text})\n"
            )

        # 7. Plots
        #   a) SHAP-like Waterfall Plot
        fig_waterfall = create_shap_waterfall_plot(
            important_kmers,
            kmer_importances,
            human_prob,
            f"{header}"
        )
        buf1 = io.BytesIO()
        fig_waterfall.savefig(buf1, format='png', bbox_inches='tight', dpi=120)
        buf1.seek(0)
        waterfall_img = Image.open(buf1)
        plt.close(fig_waterfall)

        #   b) Frequency & σ Plot (top 10 k-mers)
        fig_freq_sigma = create_frequency_sigma_plot(
            important_kmers,
            f"{header}"
        )
        buf2 = io.BytesIO()
        fig_freq_sigma.savefig(buf2, format='png', bbox_inches='tight', dpi=120)
        buf2.seek(0)
        freq_sigma_img = Image.open(buf2)
        plt.close(fig_freq_sigma)

        #   c) Absolute Importance Bar Plot
        fig_imp = create_importance_bar_plot(
            important_kmers,
            f"{header}"
        )
        buf3 = io.BytesIO()
        fig_imp.savefig(buf3, format='png', bbox_inches='tight', dpi=120)
        buf3.seek(0)
        importance_img = Image.open(buf3)
        plt.close(fig_imp)

        return summary_text, waterfall_img, freq_sigma_img, importance_img

    except Exception as e:
        return (
            f"Error during prediction or visualization: {str(e)}",
            None,
            None,
            None
        )


###############################################################################
# Gradio Interface
###############################################################################
with gr.Blocks(title="Advanced Virus Host Classifier") as demo:
    gr.Markdown(
        """
        # Advanced Virus Host Classifier
        **Upload a FASTA file** containing a single nucleotide sequence. 
        The model will predict whether this sequence is **human** or **non-human**, 
        provide a confidence score, and highlight the most influential k-mers 
        (using a SHAP-like waterfall plot) along with two additional plots.
        """
    )
    
    with gr.Row():
        file_in = gr.File(label="Upload FASTA", type="binary")
        btn = gr.Button("Run Prediction")

    # We will create multiple tabs for our outputs
    with gr.Tabs():
        with gr.Tab("Prediction Results"):
            md_out = gr.Markdown()
        with gr.Tab("SHAP-like Waterfall Plot"):
            water_out = gr.Image()
        with gr.Tab("Frequency & σ Plot"):
            freq_out = gr.Image()
        with gr.Tab("Importance Bar Plot"):
            imp_out = gr.Image()

    # Link the button
    btn.click(
        fn=predict,
        inputs=[file_in],
        outputs=[md_out, water_out, freq_out, imp_out]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)