Spaces:
Running
Running
File size: 16,930 Bytes
5263bd3 4a7c026 40fe6da 5263bd3 8c49ca8 5263bd3 cdd8a58 8c49ca8 0e7de0c 8c49ca8 cdd8a58 40fe6da cdd8a58 0e7de0c 40fe6da 6c88c65 40fe6da 8c49ca8 40fe6da 5263bd3 8c49ca8 870813f 8c49ca8 870813f 8c49ca8 6c88c65 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 6c88c65 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 6c88c65 8c49ca8 63d967d 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 63d967d 0e7de0c 870813f 723da6d 0e7de0c 723da6d 0e7de0c 723da6d 0e7de0c 723da6d 0e7de0c 6a3b036 723da6d 0e7de0c 9d48283 723da6d 0e7de0c 8c49ca8 0e7de0c 17c9ecb 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 4a7c026 0e7de0c 6c88c65 0e7de0c 6c88c65 0e7de0c 6c88c65 0e7de0c 6c88c65 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 8c49ca8 0e7de0c 723da6d 0e7de0c 723da6d 5263bd3 8c49ca8 0e7de0c 5263bd3 723da6d 0e7de0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# Model Definition
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_feature_importance(self, x):
"""
Calculate gradient-based feature importance, specifically for the
'human' class (index=1) by computing gradient of that probability wrt x.
"""
x.requires_grad_(True)
output = self.network(x)
probs = torch.softmax(output, dim=1)
# Probability of 'human' class (index=1)
human_prob = probs[..., 1]
if x.grad is not None:
x.grad.zero_()
human_prob.backward()
importance = x.grad # shape: (batch_size, n_features)
return importance, float(human_prob)
###############################################################################
# Utility Functions
###############################################################################
def parse_fasta(text):
"""Parses text input in FASTA format into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a single nucleotide sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers # normalize frequencies
return vec
###############################################################################
# Visualization
###############################################################################
def create_shap_waterfall_plot(important_kmers, all_kmer_importance, human_prob, title):
"""
Create a SHAP-like waterfall plot:
- Start at baseline = 0.5
- Add a bar for "Other" which is the combined effect of all less-important k-mers
- Then apply each of the top k-mers in descending order of absolute importance
- Show final predicted human probability as the endpoint
"""
# 1) Sort 'important_kmers' by absolute impact descending
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
# 2) Compute the total effect of "other" k-mers
# We have 256 total features. We selected top 10. Sum the rest.
top_ids = set([km['idx'] for km in sorted_kmers])
other_contributions = []
for i, val in enumerate(all_kmer_importance):
if i not in top_ids:
other_contributions.append(val)
# sum up those "other" contributions
other_sum = np.sum(other_contributions)
# The "impact" for "other" will be the absolute value, direction depends on sign
other_impact = float(abs(other_sum))
other_direction = "human" if other_sum > 0 else "non-human"
# 3) Build a list of all bars: first "other", then each top k-mer
# Each bar needs: name, raw_contribution_value
# We'll store (label, contribution). The sign indicates direction.
bars = []
bars.append(("Other", other_sum)) # lumps the leftover k-mers
for km in sorted_kmers:
# We re-inject the sign on the raw gradient
# (We stored only the absolute in "impact," so let's create a signed value)
signed_val = km['impact'] if km['direction'] == 'human' else -km['impact']
bars.append((km['kmer'], signed_val))
# 4) Waterfall plot data:
# We'll accumulate partial sums from baseline=0.5
baseline = 0.5
running_val = baseline
x_labels = []
y_vals = []
bar_colors = []
# We'll use green for positive contributions (pushing toward 'human'),
# red for negative contributions (pushing away from 'human')
for (label, contrib) in bars:
x_labels.append(label)
# new value after adding this contribution
new_val = running_val + (0.05 * contrib)
# ^ scaled by 0.05 for better display. Adjust as desired.
y_vals.append((running_val, new_val))
running_val = new_val
if contrib >= 0:
bar_colors.append("green")
else:
bar_colors.append("red")
final_prob = running_val
# Final point is the model's predicted probability (not always exact, but this is a shap-like idea).
# If we want to forcibly ensure final_prob = human_prob, we could do:
# correction = human_prob - running_val
# running_val += correction
# but for now let's keep the "waterfall" purely additive from the gradient.
# Let's plot:
fig, ax = plt.subplots(figsize=(10, 6))
# We'll create the bars manually
x_positions = np.arange(len(x_labels))
last_end = baseline
for i, ((start_val, end_val), color) in enumerate(zip(y_vals, bar_colors)):
# The bar's height is the difference
height = end_val - start_val
ax.bar(i, height, bottom=start_val, color=color, edgecolor='black', alpha=0.7)
ax.text(i, (start_val + end_val) / 2, f"{height:+.3f}", ha='center', va='center', color='white', fontsize=8)
ax.axhline(y=baseline, color='black', linestyle='--', linewidth=1)
ax.set_xticks(x_positions)
ax.set_xticklabels(x_labels, rotation=45, ha='right')
ax.set_ylim(0, 1)
ax.set_ylabel("Running Probability (Human)")
ax.set_title(f"SHAP-like Waterfall — Final Probability: {final_prob:.3f} (Model Probability: {human_prob:.3f})")
plt.tight_layout()
return fig
def create_frequency_sigma_plot(important_kmers, title):
"""Creates a bar plot of the top k-mers (by importance) showing frequency (%) and σ from mean."""
# Sort by absolute impact
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
kmers = [k["kmer"] for k in sorted_kmers]
frequencies = [k["occurrence"] for k in sorted_kmers] # in %
sigmas = [k["sigma"] for k in sorted_kmers]
directions = [k["direction"] for k in sorted_kmers]
x = np.arange(len(kmers))
width = 0.4
fig, ax_bar = plt.subplots(figsize=(10, 6))
# Bar for frequency
bars_freq = ax_bar.bar(
x - width/2, frequencies, width, alpha=0.7,
color=["green" if d=="human" else "red" for d in directions],
label="Frequency (%)"
)
ax_bar.set_ylabel("Frequency (%)")
ax_bar.set_ylim(0, max(frequencies) * 1.2 if frequencies else 1)
# Twin axis for σ
ax_bar_twin = ax_bar.twinx()
bars_sigma = ax_bar_twin.bar(
x + width/2, sigmas, width, alpha=0.5, color="gray", label="σ from Mean"
)
ax_bar_twin.set_ylabel("Standard Deviations (σ)")
ax_bar.set_title(f"Frequency & σ from Mean for Top k-mers — {title}")
ax_bar.set_xticks(x)
ax_bar.set_xticklabels(kmers, rotation=45, ha='right')
# Combined legend
lines1, labels1 = ax_bar.get_legend_handles_labels()
lines2, labels2 = ax_bar_twin.get_legend_handles_labels()
ax_bar.legend(lines1 + lines2, labels1 + labels2, loc="upper right")
plt.tight_layout()
return fig
def create_importance_bar_plot(important_kmers, title):
"""
Create a simple bar chart showing the absolute gradient magnitude
for the top k-mers, sorted descending.
"""
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
kmers = [k['kmer'] for k in sorted_kmers]
impacts = [k['impact'] for k in sorted_kmers]
directions = [k["direction"] for k in sorted_kmers]
x = np.arange(len(kmers))
fig, ax = plt.subplots(figsize=(10, 6))
bar_colors = ["green" if d=="human" else "red" for d in directions]
ax.bar(x, impacts, color=bar_colors, alpha=0.7)
ax.set_xticks(x)
ax.set_xticklabels(kmers, rotation=45, ha='right')
ax.set_title(f"Absolute Feature Importance (Top k-mers) — {title}")
ax.set_ylabel("Gradient Magnitude")
ax.grid(axis="y", alpha=0.3)
plt.tight_layout()
return fig
###############################################################################
# Prediction Function
###############################################################################
def predict(file_obj):
"""
Main function for Gradio:
1. Reads the uploaded FASTA file or text.
2. Loads the model and scaler.
3. Generates predictions, probabilities, and top k-mers.
4. Returns multiple outputs:
- A textual summary (Markdown).
- Waterfall plot.
- Frequency & sigma plot.
- Absolute importance bar plot.
"""
# 0. Basic file read
if file_obj is None:
return (
"Please upload a FASTA file.",
None,
None,
None
)
try:
# If user provided raw text, use that
if isinstance(file_obj, str):
text = file_obj
else:
# If user uploaded a file, decode it
text = file_obj.decode('utf-8')
except Exception as e:
return (
f"Error reading file: {str(e)}",
None,
None,
None
)
# 1. Parse FASTA
sequences = parse_fasta(text)
if len(sequences) == 0:
return (
"No valid FASTA sequences found. Please check your input.",
None,
None,
None
)
# We’ll just classify the first sequence for demonstration
header, seq = sequences[0]
# 2. Create k-mer vector & load model
k = 4
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
# Prepare raw freq vector & scale
raw_freq_vector = sequence_to_kmer_vector(seq, k=k)
# Load model & scaler
model = VirusClassifier(input_shape=4**k).to(device)
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
model.eval()
scaled_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
X_tensor = torch.FloatTensor(scaled_vector).to(device)
# 3. Inference
with torch.no_grad():
logits = model(X_tensor)
probs = torch.softmax(logits, dim=1)
human_prob = float(probs[0][1])
non_human_prob = float(probs[0][0])
pred_class = 1 if human_prob >= non_human_prob else 0
pred_label = "human" if pred_class == 1 else "non-human"
confidence = float(max(probs[0]))
# 4. Feature importance
importance, hum_prob_grad = model.get_feature_importance(X_tensor)
# shape: [1, 256]
kmer_importances = importance[0].cpu().numpy()
# We’ll store them as a dictionary: index -> (k-mer, importance)
# Build up a dict for k-mer strings
kmers_list = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers_list)}
# 5. Get the top 10 k-mers by absolute importance
abs_importance = np.abs(kmer_importances)
top_k = 10
top_idxs = np.argsort(abs_importance)[-top_k:][::-1] # descending
important_kmers = []
for idx in top_idxs:
# Find the k-mer by index
kmer_str = kmers_list[idx]
# direction
direction = "human" if kmer_importances[idx] > 0 else "non-human"
# frequency in % from raw_freq_vector
freq_percent = float(raw_freq_vector[idx] * 100)
# sigma from scaled vector
sigma_val = float(scaled_vector[0][idx])
important_kmers.append({
'kmer': kmer_str,
'idx': idx,
'impact': float(abs_importance[idx]),
'direction': direction,
'occurrence': freq_percent,
'sigma': sigma_val
})
# 6. Text Summary
summary_text = (
f"**Sequence Header**: {header}\n\n"
f"**Predicted Label**: {pred_label}\n"
f"**Confidence**: {confidence:.4f}\n\n"
f"**Human Probability**: {human_prob:.4f}\n"
f"**Non-human Probability**: {non_human_prob:.4f}\n\n"
"### Most Influential k-mers:\n"
)
for km in important_kmers:
direction_text = f"(pushes toward {km['direction']})"
freq_text = f"{km['occurrence']:.2f}%"
sigma_text = f"{abs(km['sigma']):.2f}σ " + ("above" if km['sigma']>0 else "below") + " mean"
summary_text += (
f"- **{km['kmer']}**: impact={km['impact']:.4f}, {direction_text}, "
f"occurrence={freq_text}, ({sigma_text})\n"
)
# 7. Plots
# a) SHAP-like Waterfall Plot
fig_waterfall = create_shap_waterfall_plot(
important_kmers,
kmer_importances,
human_prob,
f"{header}"
)
buf1 = io.BytesIO()
fig_waterfall.savefig(buf1, format='png', bbox_inches='tight', dpi=120)
buf1.seek(0)
waterfall_img = Image.open(buf1)
plt.close(fig_waterfall)
# b) Frequency & σ Plot (top 10 k-mers)
fig_freq_sigma = create_frequency_sigma_plot(
important_kmers,
f"{header}"
)
buf2 = io.BytesIO()
fig_freq_sigma.savefig(buf2, format='png', bbox_inches='tight', dpi=120)
buf2.seek(0)
freq_sigma_img = Image.open(buf2)
plt.close(fig_freq_sigma)
# c) Absolute Importance Bar Plot
fig_imp = create_importance_bar_plot(
important_kmers,
f"{header}"
)
buf3 = io.BytesIO()
fig_imp.savefig(buf3, format='png', bbox_inches='tight', dpi=120)
buf3.seek(0)
importance_img = Image.open(buf3)
plt.close(fig_imp)
return summary_text, waterfall_img, freq_sigma_img, importance_img
except Exception as e:
return (
f"Error during prediction or visualization: {str(e)}",
None,
None,
None
)
###############################################################################
# Gradio Interface
###############################################################################
with gr.Blocks(title="Advanced Virus Host Classifier") as demo:
gr.Markdown(
"""
# Advanced Virus Host Classifier
**Upload a FASTA file** containing a single nucleotide sequence.
The model will predict whether this sequence is **human** or **non-human**,
provide a confidence score, and highlight the most influential k-mers
(using a SHAP-like waterfall plot) along with two additional plots.
"""
)
with gr.Row():
file_in = gr.File(label="Upload FASTA", type="binary")
btn = gr.Button("Run Prediction")
# We will create multiple tabs for our outputs
with gr.Tabs():
with gr.Tab("Prediction Results"):
md_out = gr.Markdown()
with gr.Tab("SHAP-like Waterfall Plot"):
water_out = gr.Image()
with gr.Tab("Frequency & σ Plot"):
freq_out = gr.Image()
with gr.Tab("Importance Bar Plot"):
imp_out = gr.Image()
# Link the button
btn.click(
fn=predict,
inputs=[file_in],
outputs=[md_out, water_out, freq_out, imp_out]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|