Spaces:
Running
Running
File size: 8,784 Bytes
5263bd3 4a7c026 40fe6da 5263bd3 cdd8a58 40fe6da cdd8a58 40fe6da cdd8a58 40fe6da 5263bd3 9d48283 870813f 9d48283 870813f 9d48283 5263bd3 870813f 63d967d 4a7c026 870813f 723da6d 4a7c026 723da6d 6a3b036 cdd8a58 723da6d 6a3b036 9d48283 723da6d 4a7c026 723da6d 4a7c026 723da6d 4a7c026 17c9ecb 4a7c026 17c9ecb 4a7c026 40fe6da 4a7c026 40fe6da 4a7c026 40fe6da 4a7c026 5bf9386 40fe6da 4a7c026 17c9ecb 4c1d061 4a7c026 17c9ecb 40fe6da 5bf9386 4a7c026 40fe6da 4a7c026 40fe6da 4a7c026 4c1d061 40fe6da 4a7c026 40fe6da 4a7c026 5263bd3 cdd8a58 2897f12 4a7c026 40fe6da 4a7c026 40fe6da 4a7c026 723da6d 4a7c026 723da6d 4a7c026 5263bd3 870813f 723da6d 4a7c026 870813f 5263bd3 723da6d 5bf9386 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import shap
import matplotlib.pyplot as plt
import io
from PIL import Image
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_feature_importance(self, x):
"""Calculate feature importance using gradient-based method for the human class (index 1)"""
x.requires_grad_(True)
output = self.network(x)
probs = torch.softmax(output, dim=1)
# We focus on the human class (index 1) probability
human_prob = probs[..., 1]
human_prob.backward()
# The gradient shows how each feature affects the human probability
importance = x.grad
return importance, float(human_prob)
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert sequence to k-mer frequency vector"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def parse_fasta(text):
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def predict(file_obj):
if file_obj is None:
return "Please upload a FASTA file", None
try:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
except Exception as e:
return f"Error reading file: {str(e)}", None
k = 4
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = VirusClassifier(256).to(device)
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
model.eval()
except Exception as e:
return f"Error loading model: {str(e)}", None
results_text = ""
plot_image = None
try:
sequences = parse_fasta(text)
header, seq = sequences[0]
raw_freq_vector = sequence_to_kmer_vector(seq)
kmer_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
X_tensor = torch.FloatTensor(kmer_vector).to(device)
# Calculate final probabilities first
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
human_prob = float(probs[0][1])
# Get feature importance using integrated gradients
baseline = torch.zeros_like(X_tensor) # baseline of zeros
steps = 50
all_importance = []
for i in range(steps + 1):
alpha = i / steps
interpolated = baseline + alpha * (X_tensor - baseline)
interpolated.requires_grad_(True)
output = model(interpolated)
probs = torch.softmax(output, dim=1)
human_class = probs[..., 1]
if interpolated.grad is not None:
interpolated.grad.zero_()
human_class.backward()
all_importance.append(interpolated.grad.cpu().numpy())
# Average the gradients
kmer_importance = np.mean(all_importance, axis=0)[0]
# Scale to match probability difference
target_diff = human_prob - 0.5 # difference from neutral prediction
current_sum = np.sum(kmer_importance)
if current_sum != 0: # avoid division by zero
kmer_importance = kmer_importance * (target_diff / current_sum)
# Get top k-mers by absolute importance
top_k = 10
top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1]
important_kmers = [
{
'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)],
'importance': float(kmer_importance[i]),
'frequency': float(raw_freq_vector[i]),
'scaled': float(kmer_vector[0][i])
}
for i in top_indices
]
# Prepare data for SHAP waterfall plot
top_features = [item['kmer'] for item in important_kmers]
top_values = [item['importance'] for item in important_kmers]
# Calculate the impact of remaining features
others_mask = np.ones_like(kmer_importance, dtype=bool)
others_mask[top_indices] = False
others_sum = np.sum(kmer_importance[others_mask])
top_features.append("Others")
top_values.append(others_sum)
# Calculate final probabilities first
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
human_prob = float(probs[0][1])
# Create SHAP explanation
explanation = shap.Explanation(
values=np.array(top_values),
base_values=0.5, # Start from neutral prediction
data=np.array([
raw_freq_vector[kmer_dict[feat]] if feat != "Others"
else np.sum(raw_freq_vector[others_mask])
for feat in top_features
]),
feature_names=top_features
)
explanation.expected_value = 0.5 # Start from neutral prediction
# Create waterfall plot
plt.figure(figsize=(10, 6))
fig = shap.plots._waterfall.waterfall_legacy(
explanation,
show=False,
max_display=11 # Show all features including "Others"
)
plt.title(f"Feature contributions to human probability (final prob: {human_prob:.3f})")
# Save plot
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
buf.seek(0)
plot_image = Image.open(buf)
plt.close()
# Calculate final probabilities
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
pred_class = 1 if probs[0][1] > probs[0][0] else 0
pred_label = 'human' if pred_class == 1 else 'non-human'
# Generate results text
results_text += f"""Sequence: {header}
Prediction: {pred_label}
Confidence: {float(max(probs[0])):0.4f}
Human probability: {float(probs[0][1]):0.4f}
Non-human probability: {float(probs[0][0]):0.4f}
Most influential k-mers (ranked by importance):"""
for kmer in important_kmers:
direction = "human" if kmer['importance'] > 0 else "non-human"
results_text += f"\n {kmer['kmer']}: "
results_text += f"pushes toward {direction} (impact={abs(kmer['importance']):.4f}), "
results_text += f"occurrence={kmer['frequency']*100:.2f}% of sequence "
if kmer['scaled'] > 0:
results_text += f"(appears {abs(kmer['scaled']):.2f}σ more than average)"
else:
results_text += f"(appears {abs(kmer['scaled']):.2f}σ less than average)"
except Exception as e:
return f"Error processing sequences: {str(e)}", None
return results_text, plot_image
iface = gr.Interface(
fn=predict,
inputs=gr.File(label="Upload FASTA file", type="binary"),
outputs=[gr.Textbox(label="Results"), gr.Image(label="SHAP Waterfall Plot")],
title="Virus Host Classifier"
)
if __name__ == "__main__":
iface.launch(share=True) |