File size: 8,784 Bytes
5263bd3
 
 
 
 
 
4a7c026
 
 
40fe6da
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdd8a58
 
40fe6da
cdd8a58
 
40fe6da
cdd8a58
40fe6da
 
 
 
 
 
 
 
5263bd3
9d48283
 
870813f
9d48283
 
 
870813f
 
 
9d48283
 
 
 
 
 
 
5263bd3
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d967d
 
4a7c026
870813f
723da6d
 
 
 
 
 
4a7c026
723da6d
6a3b036
cdd8a58
 
 
723da6d
 
6a3b036
9d48283
 
723da6d
 
 
4a7c026
723da6d
4a7c026
 
 
723da6d
 
4a7c026
 
 
 
 
 
17c9ecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7c026
17c9ecb
 
 
 
 
 
 
4a7c026
40fe6da
4a7c026
 
 
 
 
 
 
 
 
 
 
 
40fe6da
4a7c026
 
 
40fe6da
4a7c026
 
 
 
 
 
 
5bf9386
 
 
 
 
 
40fe6da
4a7c026
 
17c9ecb
4c1d061
 
 
 
 
4a7c026
 
17c9ecb
40fe6da
 
 
 
 
 
 
 
5bf9386
4a7c026
40fe6da
4a7c026
40fe6da
4a7c026
4c1d061
40fe6da
 
 
 
 
 
4a7c026
 
 
 
40fe6da
4a7c026
5263bd3
 
 
cdd8a58
2897f12
4a7c026
 
40fe6da
4a7c026
40fe6da
4a7c026
 
 
 
 
 
723da6d
4a7c026
723da6d
4a7c026
5263bd3
 
870813f
723da6d
4a7c026
870813f
5263bd3
 
723da6d
5bf9386
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import shap
import matplotlib.pyplot as plt
import io
from PIL import Image

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)
    
    def get_feature_importance(self, x):
        """Calculate feature importance using gradient-based method for the human class (index 1)"""
        x.requires_grad_(True)
        output = self.network(x)
        probs = torch.softmax(output, dim=1)
        
        # We focus on the human class (index 1) probability
        human_prob = probs[..., 1]
        human_prob.backward()
        
        # The gradient shows how each feature affects the human probability
        importance = x.grad
        
        return importance, float(human_prob)

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """Convert sequence to k-mer frequency vector"""
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1

    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec = vec / total_kmers

    return vec

def parse_fasta(text):
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def predict(file_obj):
    if file_obj is None:
        return "Please upload a FASTA file", None
    
    try:
        if isinstance(file_obj, str):
            text = file_obj
        else:
            text = file_obj.decode('utf-8')
    except Exception as e:
        return f"Error reading file: {str(e)}", None

    k = 4
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    
    try:
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        model = VirusClassifier(256).to(device)
        state_dict = torch.load('model.pt', map_location=device)
        model.load_state_dict(state_dict)
        scaler = joblib.load('scaler.pkl')
        model.eval()
    except Exception as e:
        return f"Error loading model: {str(e)}", None

    results_text = ""
    plot_image = None
    
    try:
        sequences = parse_fasta(text)
        header, seq = sequences[0]
        
        raw_freq_vector = sequence_to_kmer_vector(seq)
        kmer_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
        X_tensor = torch.FloatTensor(kmer_vector).to(device)
        
        # Calculate final probabilities first
        with torch.no_grad():
            output = model(X_tensor)
            probs = torch.softmax(output, dim=1)
            human_prob = float(probs[0][1])
        
        # Get feature importance using integrated gradients
        baseline = torch.zeros_like(X_tensor)  # baseline of zeros
        steps = 50
        
        all_importance = []
        for i in range(steps + 1):
            alpha = i / steps
            interpolated = baseline + alpha * (X_tensor - baseline)
            interpolated.requires_grad_(True)
            
            output = model(interpolated)
            probs = torch.softmax(output, dim=1)
            human_class = probs[..., 1]
            
            if interpolated.grad is not None:
                interpolated.grad.zero_()
            human_class.backward()
            all_importance.append(interpolated.grad.cpu().numpy())
        
        # Average the gradients
        kmer_importance = np.mean(all_importance, axis=0)[0]
        # Scale to match probability difference
        target_diff = human_prob - 0.5  # difference from neutral prediction
        current_sum = np.sum(kmer_importance)
        if current_sum != 0:  # avoid division by zero
            kmer_importance = kmer_importance * (target_diff / current_sum)
        
        # Get top k-mers by absolute importance
        top_k = 10
        top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1]
        important_kmers = [
            {
                'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)],
                'importance': float(kmer_importance[i]),
                'frequency': float(raw_freq_vector[i]),
                'scaled': float(kmer_vector[0][i])
            }
            for i in top_indices
        ]
        
        # Prepare data for SHAP waterfall plot
        top_features = [item['kmer'] for item in important_kmers]
        top_values = [item['importance'] for item in important_kmers]
        
        # Calculate the impact of remaining features
        others_mask = np.ones_like(kmer_importance, dtype=bool)
        others_mask[top_indices] = False
        others_sum = np.sum(kmer_importance[others_mask])
        
        top_features.append("Others")
        top_values.append(others_sum)
        
        # Calculate final probabilities first
        with torch.no_grad():
            output = model(X_tensor)
            probs = torch.softmax(output, dim=1)
            human_prob = float(probs[0][1])

        # Create SHAP explanation
        explanation = shap.Explanation(
            values=np.array(top_values),
            base_values=0.5,  # Start from neutral prediction
            data=np.array([
                raw_freq_vector[kmer_dict[feat]] if feat != "Others" 
                else np.sum(raw_freq_vector[others_mask]) 
                for feat in top_features
            ]),
            feature_names=top_features
        )
        explanation.expected_value = 0.5  # Start from neutral prediction

        # Create waterfall plot
        plt.figure(figsize=(10, 6))
        fig = shap.plots._waterfall.waterfall_legacy(
            explanation,
            show=False,
            max_display=11  # Show all features including "Others"
        )
        plt.title(f"Feature contributions to human probability (final prob: {human_prob:.3f})")
        
        # Save plot
        buf = io.BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
        buf.seek(0)
        plot_image = Image.open(buf)
        plt.close()

        # Calculate final probabilities
        with torch.no_grad():
            output = model(X_tensor)
            probs = torch.softmax(output, dim=1)

        pred_class = 1 if probs[0][1] > probs[0][0] else 0
        pred_label = 'human' if pred_class == 1 else 'non-human'
        
        # Generate results text
        results_text += f"""Sequence: {header}
Prediction: {pred_label}
Confidence: {float(max(probs[0])):0.4f}
Human probability: {float(probs[0][1]):0.4f}
Non-human probability: {float(probs[0][0]):0.4f}
Most influential k-mers (ranked by importance):"""
        
        for kmer in important_kmers:
            direction = "human" if kmer['importance'] > 0 else "non-human"
            results_text += f"\n  {kmer['kmer']}: "
            results_text += f"pushes toward {direction} (impact={abs(kmer['importance']):.4f}), "
            results_text += f"occurrence={kmer['frequency']*100:.2f}% of sequence "
            if kmer['scaled'] > 0:
                results_text += f"(appears {abs(kmer['scaled']):.2f}σ more than average)"
            else:
                results_text += f"(appears {abs(kmer['scaled']):.2f}σ less than average)"
        
    except Exception as e:
        return f"Error processing sequences: {str(e)}", None

    return results_text, plot_image

iface = gr.Interface(
    fn=predict,
    inputs=gr.File(label="Upload FASTA file", type="binary"),
    outputs=[gr.Textbox(label="Results"), gr.Image(label="SHAP Waterfall Plot")],
    title="Virus Host Classifier"
)

if __name__ == "__main__":
    iface.launch(share=True)