Spaces:
Running
Running
File size: 17,323 Bytes
5263bd3 3b775b7 5263bd3 4a7c026 40fe6da afbf1c6 8c49ca8 5263bd3 3b775b7 5263bd3 8c49ca8 870813f 3b775b7 870813f 8c49ca8 3b775b7 8c49ca8 6c88c65 8c49ca8 3b775b7 8c49ca8 3b775b7 8c49ca8 3b775b7 8c49ca8 3b775b7 d192dd4 3b775b7 7e19501 3b775b7 7e19501 3b775b7 7e19501 3b775b7 7e19501 6c88c65 8c49ca8 3b775b7 7e19501 3b775b7 0e7de0c 3b775b7 8c49ca8 3b775b7 0e7de0c 3b775b7 8c49ca8 6c88c65 3b775b7 6c88c65 3b775b7 8c49ca8 3b775b7 8c49ca8 3b775b7 8c49ca8 3b775b7 8c49ca8 3b775b7 7e19501 3b775b7 d192dd4 3b775b7 0e7de0c 3b775b7 0e7de0c 3b775b7 6a3b036 7e19501 723da6d 3b775b7 9d48283 d192dd4 3b775b7 0d2d632 3b775b7 d192dd4 3b775b7 723da6d 5263bd3 8c49ca8 3b775b7 d192dd4 3b775b7 0e7de0c 3b775b7 0e7de0c 3b775b7 0d2d632 723da6d 3b775b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import gradio as gr
import torch
import joblib
import numpy as np
import shap
import random
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# Model Definition
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_feature_importance(self, x):
"""
Calculate gradient-based feature importance, specifically for the
'human' class (index=1) by computing gradient of that probability wrt x.
"""
x.requires_grad_(True)
output = self.network(x)
probs = torch.softmax(output, dim=1)
# Probability of 'human' class (index=1)
human_prob = probs[..., 1]
if x.grad is not None:
x.grad.zero_()
human_prob.backward()
importance = x.grad # shape: (batch_size, n_features)
return importance, float(human_prob)
###############################################################################
# Utility Functions
###############################################################################
def parse_fasta(text):
"""Parses text input in FASTA format into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a single nucleotide sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers # normalize frequencies
return vec
###############################################################################
# Additional Plots
###############################################################################
def create_probability_bar_plot(prob_human, prob_nonhuman):
"""
Simple bar plot comparing human vs. non-human probabilities.
"""
labels = ["Non-human", "Human"]
probs = [prob_nonhuman, prob_human]
colors = ["red", "green"]
fig, ax = plt.subplots(figsize=(6, 4))
ax.bar(labels, probs, color=colors, alpha=0.7)
ax.set_ylim(0, 1)
for i, v in enumerate(probs):
ax.text(i, v+0.02, f"{v:.3f}", ha='center', color='black', fontsize=11)
ax.set_title("Predicted Probabilities")
ax.set_ylabel("Probability")
plt.tight_layout()
return fig
def create_frequency_sigma_plot(important_kmers, title):
"""
Creates a bar plot of the top k-mers (by importance) showing
frequency (%) and σ from mean.
"""
# Sort by absolute impact
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
kmers = [k["kmer"] for k in sorted_kmers]
frequencies = [k["occurrence"] for k in sorted_kmers] # in %
sigmas = [k["sigma"] for k in sorted_kmers]
directions = [k["direction"] for k in sorted_kmers]
x = np.arange(len(kmers))
width = 0.4
fig, ax_bar = plt.subplots(figsize=(10, 5))
# Bar for frequency
bars_freq = ax_bar.bar(
x - width/2, frequencies, width, alpha=0.7,
color=["green" if d=="human" else "red" for d in directions],
label="Frequency (%)"
)
ax_bar.set_ylabel("Frequency (%)")
ax_bar.set_ylim(0, max(frequencies) * 1.2 if len(frequencies) > 0 else 1)
# Twin axis for σ
ax_bar_twin = ax_bar.twinx()
bars_sigma = ax_bar_twin.bar(
x + width/2, sigmas, width, alpha=0.5, color="gray", label="σ from Mean"
)
ax_bar_twin.set_ylabel("Standard Deviations (σ)")
ax_bar.set_title(f"Frequency & σ from Mean for Top k-mers — {title}")
ax_bar.set_xticks(x)
ax_bar.set_xticklabels(kmers, rotation=45, ha='right')
# Combined legend
lines1, labels1 = ax_bar.get_legend_handles_labels()
lines2, labels2 = ax_bar_twin.get_legend_handles_labels()
ax_bar.legend(lines1 + lines2, labels1 + labels2, loc="upper right")
plt.tight_layout()
return fig
def create_importance_bar_plot(important_kmers, title):
"""
Create a simple bar chart showing the absolute gradient magnitude
for the top k-mers, sorted descending.
"""
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
kmers = [k['kmer'] for k in sorted_kmers]
impacts = [k['impact'] for k in sorted_kmers]
directions = [k["direction"] for k in sorted_kmers]
x = np.arange(len(kmers))
fig, ax = plt.subplots(figsize=(10, 5))
bar_colors = ["green" if d=="human" else "red" for d in directions]
ax.bar(x, impacts, color=bar_colors, alpha=0.7, edgecolor='black')
ax.set_xticks(x)
ax.set_xticklabels(kmers, rotation=45, ha='right')
ax.set_title(f"Absolute Feature Importance (Top k-mers) — {title}")
ax.set_ylabel("Gradient Magnitude")
ax.grid(axis="y", alpha=0.3)
plt.tight_layout()
return fig
###############################################################################
# SHAP Beeswarm
###############################################################################
def create_shap_beeswarm_plot(
model,
input_vector: np.ndarray,
background_data: np.ndarray,
feature_names: list
):
"""
Creates a SHAP beeswarm plot using KernelExplainer for the given model and data.
Parameters
----------
model : nn.Module
Trained PyTorch model (binary classifier).
input_vector : np.ndarray
The 1-sample input (or multiple samples) we want SHAP values for.
background_data : np.ndarray
Background samples for KernelExplainer. Should have shape (N, #features).
feature_names : list
Names for each feature (k-mers).
Returns
-------
fig : matplotlib Figure
Beeswarm plot figure.
"""
# We'll define a prediction function that shap can call
# The model outputs logits for shape [N, 2]
# We want the raw outputs for each class. SHAP will handle the link function if needed.
def predict_fn(data):
"""
data: shape (N, #features)
returns: shape (N, 2) for 2-class logits
"""
with torch.no_grad():
x = torch.FloatTensor(data)
logits = model(x)
return logits.detach().cpu().numpy()
# Create KernelExplainer
explainer = shap.KernelExplainer(
model=predict_fn,
data=background_data
)
# Compute SHAP values
# For a 2-class model, shap_values is a list of length 2 => [class0 array, class1 array]
# Each array is shape (N, #features).
shap_values = explainer.shap_values(input_vector)
# We’ll produce a beeswarm for the 'human' class (class index=1).
# If we have only 1 sample, the beeswarm won't be too interesting, but let's do it anyway.
class_idx = 1 # 'human'
# If we only have one sample, place it in an array for shap summary plotting:
# We can do shap_values[class_idx].shape => (1, #features) for a single sample
# Beeswarm typically expects multiple samples. We'll plot anyway.
shap.plots.beeswarm(
shap_values[class_idx],
feature_names=feature_names,
show=False
)
fig = plt.gcf()
fig.set_size_inches(8, 6)
plt.title("SHAP Beeswarm Plot (Class: Human)")
plt.tight_layout()
return fig
###############################################################################
# Prediction Function
###############################################################################
def predict(file_obj):
"""
Main function for Gradio:
1. Reads the uploaded FASTA file or text.
2. Loads the model and scaler.
3. Generates predictions, probabilities, and top k-mers.
4. Creates multiple outputs:
- Text summary (Markdown)
- Probability Bar Plot
- SHAP Beeswarm Plot
- Frequency & σ Plot
- Absolute Feature Importance Bar Plot
"""
# 0. Basic file read
if file_obj is None:
return (
"Please upload a FASTA file.",
None,
None,
None,
None
)
try:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
except Exception as e:
return (
f"Error reading file: {str(e)}",
None,
None,
None,
None
)
# 1. Parse FASTA
sequences = parse_fasta(text)
if len(sequences) == 0:
return (
"No valid FASTA sequences found. Please check your input.",
None,
None,
None,
None
)
header, seq = sequences[0] # We'll classify only the first sequence
# 2. Prepare model, scaler, and input
k = 4
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
raw_freq_vector = sequence_to_kmer_vector(seq, k=k)
# Load model & scaler
model = VirusClassifier(input_shape=4**k).to(device)
state_dict = torch.load("model.pt", map_location=device)
model.load_state_dict(state_dict)
scaler = joblib.load("scaler.pkl")
model.eval()
scaled_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
X_tensor = torch.FloatTensor(scaled_vector).to(device)
# 3. Predict
with torch.no_grad():
logits = model(X_tensor)
probs = torch.softmax(logits, dim=1)
human_prob = float(probs[0][1])
non_human_prob = float(probs[0][0])
pred_label = "human" if human_prob >= non_human_prob else "non-human"
confidence = float(max(probs[0]))
# 4. Gradient-based feature importance
importance, hum_prob_grad = model.get_feature_importance(X_tensor)
importances = importance[0].cpu().numpy() # shape: (#features,)
abs_importances = np.abs(importances)
# 5. Gather k-mer strings
kmers_list = [''.join(p) for p in product("ACGT", repeat=k)]
# top 10 by absolute importance
top_k = 10
top_idxs = np.argsort(abs_importances)[-top_k:][::-1]
important_kmers = []
for idx in top_idxs:
direction = "human" if importances[idx] > 0 else "non-human"
freq_percent = float(raw_freq_vector[idx] * 100.0)
sigma_val = float(scaled_vector[0][idx]) # scaled / standardized val
important_kmers.append({
'kmer': kmers_list[idx],
'idx': idx,
'impact': abs_importances[idx],
'direction': direction,
'occurrence': freq_percent,
'sigma': sigma_val
})
# 6. Generate text summary
text_summary = (
f"**Sequence Header**: {header}\n\n"
f"**Predicted Label**: {pred_label}\n"
f"**Confidence**: {confidence:.4f}\n\n"
f"**Human Probability**: {human_prob:.4f}\n"
f"**Non-human Probability**: {non_human_prob:.4f}\n\n"
"### Most Influential k-mers:\n"
)
for km in important_kmers:
direction_text = f"(pushes toward {km['direction']})"
freq_text = f"{km['occurrence']:.2f}%"
sigma_text = (
f"{abs(km['sigma']):.2f}σ "
+ ("above" if km['sigma'] > 0 else "below")
+ " mean"
)
text_summary += (
f"- **{km['kmer']}**: impact={km['impact']:.4f}, {direction_text}, "
f"occurrence={freq_text}, ({sigma_text})\n"
)
# 7. Probability Bar Plot
fig_prob = create_probability_bar_plot(human_prob, non_human_prob)
buf_prob = io.BytesIO()
fig_prob.savefig(buf_prob, format='png', bbox_inches='tight', dpi=120)
buf_prob.seek(0)
prob_img = Image.open(buf_prob)
plt.close(fig_prob)
# 8. SHAP Beeswarm Plot
# We need some background data for KernelExplainer. Let's create a small random sample
# or sample from the scaled_vector itself in a repeated manner. Real usage: choose a valid background set.
background_size = 5 # keep small for speed
# We'll pick random sequences from normal(0,1) or from scaled_vector repeated
background_data = []
for _ in range(background_size):
# Option A: random small variations around scaled_vector
# new_sample = scaled_vector[0] + np.random.normal(0, 0.5, size=scaled_vector.shape[1])
# Option B: just clone the same scaled vector multiple times
new_sample = scaled_vector[0]
background_data.append(new_sample)
background_data = np.stack(background_data, axis=0) # shape (5, #features)
fig_bee = create_shap_beeswarm_plot(
model=model,
input_vector=scaled_vector, # our single sample
background_data=background_data, # background for KernelExplainer
feature_names=kmers_list
)
buf_bee = io.BytesIO()
fig_bee.savefig(buf_bee, format='png', bbox_inches='tight', dpi=120)
buf_bee.seek(0)
bee_img = Image.open(buf_bee)
plt.close(fig_bee)
# 9. Frequency & σ Plot
fig_freq = create_frequency_sigma_plot(important_kmers, header)
buf_freq = io.BytesIO()
fig_freq.savefig(buf_freq, format='png', bbox_inches='tight', dpi=120)
buf_freq.seek(0)
freq_img = Image.open(buf_freq)
plt.close(fig_freq)
# 10. Absolute Feature Importance Bar Plot
fig_imp = create_importance_bar_plot(important_kmers, header)
buf_imp = io.BytesIO()
fig_imp.savefig(buf_imp, format='png', bbox_inches='tight', dpi=120)
buf_imp.seek(0)
imp_img = Image.open(buf_imp)
plt.close(fig_imp)
return text_summary, prob_img, bee_img, freq_img, imp_img
except Exception as e:
return (
f"Error during prediction or visualization: {str(e)}",
None,
None,
None,
None
)
###############################################################################
# Gradio Interface
###############################################################################
with gr.Blocks(title="Advanced Virus Host Classifier with SHAP Beeswarm") as demo:
gr.Markdown(
"""
# Advanced Virus Host Classifier (SHAP Beeswarm Edition)
**Upload a FASTA file** containing a single nucleotide sequence.
The model will predict whether this sequence is **human** or **non-human**,
provide a confidence score, and highlight the most influential k-mers.
We also produce a **SHAP beeswarm** plot for the features.
---
**Note**: Beeswarm plots are usually most insightful with multiple samples.
Here, we demonstrate usage with a single sample plus a small synthetic background.
"""
)
with gr.Row():
file_in = gr.File(label="Upload FASTA", type="binary")
btn = gr.Button("Run Prediction")
# We will create multiple tabs for our outputs
with gr.Tabs():
with gr.Tab("Prediction Results"):
md_out = gr.Markdown()
with gr.Tab("Probability Plot"):
prob_out = gr.Image()
with gr.Tab("SHAP Beeswarm Plot"):
bee_out = gr.Image()
with gr.Tab("Frequency & σ Plot"):
freq_out = gr.Image()
with gr.Tab("Importance Bar Plot"):
imp_out = gr.Image()
# Link the button
btn.click(
fn=predict,
inputs=[file_in],
outputs=[md_out, prob_out, bee_out, freq_out, imp_out]
)
if __name__ == "__main__":
# By default, share=False. You can set share=True for external access.
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|