Spaces:
Running
Running
File size: 6,814 Bytes
5263bd3 4a7c026 6a3b036 5263bd3 cdd8a58 5263bd3 9d48283 870813f 9d48283 870813f 9d48283 5263bd3 870813f 63d967d 4a7c026 870813f 723da6d 4a7c026 723da6d 6a3b036 cdd8a58 723da6d 6a3b036 9d48283 723da6d 4a7c026 723da6d 4a7c026 723da6d 4a7c026 041d3b3 4a7c026 4c1d061 4a7c026 4c1d061 4a7c026 4c1d061 4a7c026 4c1d061 4a7c026 5263bd3 cdd8a58 2897f12 4a7c026 723da6d 4a7c026 723da6d 4a7c026 5263bd3 870813f 723da6d 4a7c026 870813f 5263bd3 723da6d 4c1d061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import shap
import matplotlib.pyplot as plt
import io
from PIL import Image # Import PIL for image handling
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_feature_importance(self, x):
"""Calculate feature importance using gradient-based method"""
x.requires_grad_(True)
output = self.network(x)
importance = torch.zeros_like(x)
for i in range(output.shape[1]):
if x.grad is not None:
x.grad.zero_()
output[..., i].sum().backward(retain_graph=True)
importance += torch.abs(x.grad)
return importance
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert sequence to k-mer frequency vector"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def parse_fasta(text):
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def predict(file_obj):
if file_obj is None:
return "Please upload a FASTA file", None
try:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
except Exception as e:
return f"Error reading file: {str(e)}", None
k = 4
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = VirusClassifier(256).to(device)
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
model.eval()
except Exception as e:
return f"Error loading model: {str(e)}", None
results_text = ""
plot_image = None
try:
sequences = parse_fasta(text)
header, seq = sequences[0]
raw_freq_vector = sequence_to_kmer_vector(seq)
kmer_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
X_tensor = torch.FloatTensor(kmer_vector).to(device)
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
importance = model.get_feature_importance(X_tensor)
kmer_importance = importance[0].cpu().numpy()
if np.max(np.abs(kmer_importance)) != 0:
kmer_importance = kmer_importance / np.max(np.abs(kmer_importance)) * 0.002
top_k = 10
top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1]
important_kmers = [
{
'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)],
'importance': float(kmer_importance[i]),
'frequency': float(raw_freq_vector[i]),
'scaled': float(kmer_vector[0][i])
}
for i in top_indices
]
top_features = [item['kmer'] for item in important_kmers]
top_values = [item['importance'] for item in important_kmers]
others_mask = np.ones_like(kmer_importance, dtype=bool)
others_mask[top_indices] = False
others_sum = np.sum(kmer_importance[others_mask])
top_features.append("Others")
top_values.append(others_sum)
# Set base_values and expected_value to 0.5 for the binary classification baseline
explanation = shap.Explanation(
values=np.array(top_values),
base_values=0.5,
data=np.array([
raw_freq_vector[kmer_dict[feat]] if feat != "Others"
else np.sum(raw_freq_vector[others_mask])
for feat in top_features
]),
feature_names=top_features
)
explanation.expected_value = 0.5
fig = shap.plots._waterfall.waterfall_legacy(explanation, show=False)
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
plot_image = Image.open(buf)
pred_class = 1 if probs[0][1] > probs[0][0] else 0
pred_label = 'human' if pred_class == 1 else 'non-human'
results_text += f"""Sequence: {header}
Prediction: {pred_label}
Confidence: {float(max(probs[0])):0.4f}
Human probability: {float(probs[0][1]):0.4f}
Non-human probability: {float(probs[0][0]):0.4f}
Most influential k-mers (ranked by importance):"""
for kmer in important_kmers:
results_text += f"\n {kmer['kmer']}: "
results_text += f"impact={kmer['importance']:.4f}, "
results_text += f"occurrence={kmer['frequency']*100:.2f}% of sequence "
if kmer['scaled'] > 0:
results_text += f"(appears {abs(kmer['scaled']):.2f}σ more than average)"
else:
results_text += f"(appears {abs(kmer['scaled']):.2f}σ less than average)"
except Exception as e:
return f"Error processing sequences: {str(e)}", None
return results_text, plot_image
iface = gr.Interface(
fn=predict,
inputs=gr.File(label="Upload FASTA file", type="binary"),
outputs=[gr.Textbox(label="Results"), gr.Image(label="SHAP Waterfall Plot")],
title="Virus Host Classifier"
)
if __name__ == "__main__":
iface.launch(share=True)
|