File size: 16,286 Bytes
5263bd3
 
 
 
 
 
4a7c026
 
40fe6da
d192dd4
5263bd3
8c49ca8
 
 
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d192dd4
5263bd3
8c49ca8
 
 
870813f
d192dd4
 
 
 
870813f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49ca8
d192dd4
 
 
 
8c49ca8
 
 
6c88c65
8c49ca8
 
 
 
 
 
 
 
 
 
 
 
 
d192dd4
8c49ca8
d192dd4
 
 
 
 
 
 
8c49ca8
d192dd4
 
0e7de0c
d192dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49ca8
6c88c65
8c49ca8
 
d192dd4
 
 
 
 
0e7de0c
d192dd4
 
 
 
8c49ca8
0e7de0c
 
d192dd4
 
 
 
 
 
8c49ca8
6c88c65
 
 
8c49ca8
 
d192dd4
8c49ca8
d192dd4
8c49ca8
d192dd4
 
 
 
 
 
 
8c49ca8
d192dd4
 
 
 
 
 
 
 
 
 
0e7de0c
 
d192dd4
0e7de0c
d192dd4
6a3b036
d192dd4
 
 
 
 
 
 
 
 
 
 
 
723da6d
0e7de0c
 
d192dd4
9d48283
723da6d
 
d192dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7de0c
 
d192dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7de0c
d192dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723da6d
5263bd3
8c49ca8
 
 
d192dd4
 
 
0e7de0c
 
d192dd4
 
 
 
 
 
0e7de0c
 
 
d192dd4
 
 
 
 
 
 
 
 
 
 
 
 
0e7de0c
d192dd4
0e7de0c
d192dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7de0c
5263bd3
723da6d
0e7de0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
import shap  # Requires: pip install shap

###############################################################################
# Model Definition
###############################################################################
class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)


###############################################################################
# Utility Functions
###############################################################################
def parse_fasta(text):
    """
    Parses text input in FASTA format into a list of (header, sequence).
    Handles multiple sequences if present.
    """
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """
    Convert a single nucleotide sequence to a k-mer frequency vector
    of length 4^k (e.g., for k=4, length=256).
    """
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1

    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec = vec / total_kmers  # normalize frequencies

    return vec


###############################################################################
# Visualization Helpers
###############################################################################
def create_freq_sigma_plot(
    single_shap_values: np.ndarray,
    raw_freq_vector: np.ndarray,
    scaled_vector: np.ndarray,
    kmer_list,
    title: str
):
    """
    Creates a bar plot showing top-10 k-mers (by absolute SHAP value),
    with frequency (%) and sigma from mean on a twin-axis.
    
    single_shap_values: shape=(256,) shap values for this sample
    raw_freq_vector: shape=(256,) original frequencies for this sample
    scaled_vector: shape=(256,) scaled (Z-score) values for this sample
    kmer_list: list of all k-mers (length=256)
    """
    abs_vals = np.abs(single_shap_values)
    top_k = 10
    top_indices = np.argsort(abs_vals)[-top_k:][::-1]  # top 10 by absolute shap
    top_data = []
    for idx in top_indices:
        top_data.append({
            "kmer": kmer_list[idx],
            "shap": single_shap_values[idx],
            "abs_shap": abs_vals[idx],
            "frequency": raw_freq_vector[idx] * 100.0,  # percentage
            "sigma": scaled_vector[idx]
        })

    # Sort top_data by abs_shap descending
    top_data.sort(key=lambda x: x["abs_shap"], reverse=True)

    kmers   = [d["kmer"] for d in top_data]
    freqs   = [d["frequency"] for d in top_data]
    sigmas  = [d["sigma"] for d in top_data]
    # color by sign (positive=green, negative=red)
    colors  = ["green" if d["shap"] >= 0 else "red" for d in top_data]

    x = np.arange(len(kmers))
    width = 0.4

    fig, ax = plt.subplots(figsize=(8, 5))
    # Frequency
    ax.bar(x - width/2, freqs, width, color=colors, alpha=0.7, label="Frequency (%)")
    ax.set_ylabel("Frequency (%)", color='black')
    ax.set_ylim(0, max(freqs)*1.2 if len(freqs) else 1)

    # Twin axis for sigma
    ax2 = ax.twinx()
    ax2.bar(x + width/2, sigmas, width, color="gray", alpha=0.5, label="σ from Mean")
    ax2.set_ylabel("Standard Deviations (σ)", color='black')

    ax.set_xticks(x)
    ax.set_xticklabels(kmers, rotation=45, ha='right')
    ax.set_title(f"Top-10 K-mers (Frequency & σ)\n{title}")

    # Combine legends
    lines1, labels1 = ax.get_legend_handles_labels()
    lines2, labels2 = ax2.get_legend_handles_labels()
    ax.legend(lines1 + lines2, labels1 + labels2, loc='upper right')

    plt.tight_layout()
    return fig


###############################################################################
# Main Inference & SHAP Logic
###############################################################################
def run_classification_and_shap(file_obj):
    """
    Reads one or more FASTA sequences from file_obj or text.
    Returns:
      - Table of results (list of dicts) for each sequence
      - shap_values object (SHAP values for the entire batch)
      - array/batch of scaled vectors (for use in the waterfall selection)
      - list of k-mers (for indexing)
      - possibly the model or other context
    """
    # 1. Basic read
    if isinstance(file_obj, str):
        text = file_obj
    else:
        try:
            text = file_obj.decode("utf-8")
        except Exception as e:
            return None, None, f"Error reading file: {str(e)}"

    # 2. Parse FASTA
    sequences = parse_fasta(text)
    if len(sequences) == 0:
        return None, None, "No valid FASTA sequences found!"

    # 3. Convert each sequence to k-mer vector
    k = 4
    all_raw_vectors = []
    headers = []
    seqs = []
    for (hdr, seq) in sequences:
        raw_vec = sequence_to_kmer_vector(seq, k=k)
        all_raw_vectors.append(raw_vec)
        headers.append(hdr)
        seqs.append(seq)

    all_raw_vectors = np.stack(all_raw_vectors, axis=0)  # shape=(num_seqs, 256)

    # 4. Load model & scaler
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = VirusClassifier(input_shape=4**k).to(device)
        state_dict = torch.load("model.pt", map_location=device)
        model.load_state_dict(state_dict)
        model.eval()

        scaler = joblib.load("scaler.pkl")
    except Exception as e:
        return None, None, f"Error loading model or scaler: {str(e)}"

    # 5. Scale data
    scaled_data = scaler.transform(all_raw_vectors)  # shape=(num_seqs, 256)

    # 6. Predictions
    X_tensor = torch.FloatTensor(scaled_data).to(device)
    with torch.no_grad():
        logits = model(X_tensor)
        probs = torch.softmax(logits, dim=1).cpu().numpy()
    preds = np.argmax(probs, axis=1)  # 0 or 1

    results_table = []
    for i, (hdr, seq) in enumerate(zip(headers, seqs)):
        results_table.append({
            "header": hdr,
            "sequence": seq[:50] + ("..." if len(seq)>50 else ""),  # truncated
            "pred_label": "human" if preds[i] == 1 else "non-human",
            "human_prob": float(probs[i][1]),
            "non_human_prob": float(probs[i][0]),
            "confidence": float(max(probs[i]))
        })

    # 7. SHAP Explainer
    # We'll pick a background subset if there are many sequences
    # (For performance, we might limit to e.g. 50 samples max)
    if scaled_data.shape[0] > 50:
        background_data = scaled_data[:50]
    else:
        background_data = scaled_data

    # Use the "new" unified shap.Explainer approach
    # We pass in a function that does the forward pass. Or pass the model directly.
    # For PyTorch models, shap can do a direct 'model' approach with a mask.
    # We'll do a simple "use shap.Explainer" with data=background_data
    explainer = shap.Explainer(model, background_data)
    shap_values = explainer(scaled_data)  # shape=(num_samples, num_features)

    # k-mer list
    kmer_list = [''.join(p) for p in product("ACGT", repeat=k)]

    return (results_table, shap_values, scaled_data, kmer_list, None)


###############################################################################
# Gradio Callback Functions
###############################################################################
def main_predict(file_obj):
    """
    This function is triggered by the 'Run' button in Gradio.
    It returns a markdown of all sequences/predictions and stores
    data needed for the subsequent SHAP visualizations.
    """
    results, shap_vals, scaled_data, kmer_list, err = run_classification_and_shap(file_obj)
    if err:
        return (err, None, None, None, None)

    if results is None or shap_vals is None:
        return ("An unknown error occurred.", None, None, None, None)

    # Build a summary for all sequences
    md = "# Classification Results\n\n"
    md += "| # | Header | Pred Label | Confidence | Human Prob | Non-human Prob |\n"
    md += "|---|--------|------------|------------|------------|----------------|\n"
    for i, row in enumerate(results):
        md += (
            f"| {i} | {row['header']} | {row['pred_label']} | "
            f"{row['confidence']:.4f} | {row['human_prob']:.4f} | {row['non_human_prob']:.4f} |\n"
        )
    md += "\nSelect a sequence index below to view SHAP Waterfall & Frequency plots."

    # Return the string, and also the shap values plus data needed
    # We'll store these to SessionState via Gradio's "State" or we can 
    # pass them out as hidden fields.
    return (md, shap_vals, scaled_data, kmer_list, results)


def update_waterfall_plot(selected_index, shap_values_obj):
    """
    Build a waterfall plot for the user-selected sample.
    """
    if shap_values_obj is None:
        return None

    try:
        selected_index = int(selected_index)
    except:
        selected_index = 0

    # We'll create the figure by calling shap.plots.waterfall
    # Convert shap_values_obj to the new shap interface
    # shap_values_obj is a shap._explanation.Explanation typically

    # We can create a figure with shap.plots.waterfall and capture it as an image
    shap_plots_fig = plt.figure(figsize=(8, 5))
    shap.plots.waterfall(shap_values_obj[selected_index], max_display=14,
                         show=False)  # show=False so it doesn't pop in the notebook
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', dpi=120)
    buf.seek(0)
    wf_img = Image.open(buf)
    plt.close(shap_plots_fig)

    return wf_img


def update_beeswarm_plot(shap_values_obj):
    """
    Build a beeswarm plot across all samples.
    """
    if shap_values_obj is None:
        return None

    beeswarm_fig = plt.figure(figsize=(8, 5))
    shap.plots.beeswarm(shap_values_obj, show=False)
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', dpi=120)
    buf.seek(0)
    bs_img = Image.open(buf)
    plt.close(beeswarm_fig)

    return bs_img


def update_freq_plot(selected_index, shap_values_obj, scaled_data, kmer_list, file_obj):
    """
    Create the frequency & sigma bar chart for the selected sequence's top-10 k-mers.
    We'll need to also compute the raw_freq_vector from the original unscaled data.
    """
    if shap_values_obj is None or scaled_data is None or kmer_list is None:
        return None

    try:
        selected_index = int(selected_index)
    except:
        selected_index = 0

    # We must re-generate the raw freq vector from the original input file 
    # or store it from earlier. Let's just re-run parse for that single sequence:
    # But simpler is: run_classification_and_shap was storing all_raw_vectors...
    # Let's do a quick approach: run_classification_and_shap already computed it 
    # but we didn't store it. We'll re-run the parse logic to get the raw freq again.

    # For memory / speed reasons, better is to store it. 
    # For simplicity, let's parse again quickly:
    if isinstance(file_obj, str):
        text = file_obj
    else:
        text = file_obj.decode('utf-8')
    sequences = parse_fasta(text)
    # the selected_index might be out of range, so let's clamp it
    if selected_index >= len(sequences):
        selected_index = 0
    seq = sequences[selected_index][1]  # get the sequence
    raw_vec = sequence_to_kmer_vector(seq, k=4)

    single_shap_values = shap_values_obj.values[selected_index]
    freq_sigma_fig = create_freq_sigma_plot(
        single_shap_values, 
        raw_freq_vector=raw_vec, 
        scaled_vector=scaled_data[selected_index],
        kmer_list=kmer_list,
        title=f"Sample #{selected_index}{sequences[selected_index][0]}"
    )
    buf = io.BytesIO()
    freq_sigma_fig.savefig(buf, format='png', bbox_inches='tight', dpi=120)
    buf.seek(0)
    fs_img = Image.open(buf)
    plt.close(freq_sigma_fig)

    return fs_img


###############################################################################
# Gradio Interface
###############################################################################
with gr.Blocks(title="Multi-Sequence Virus Host Classifier with SHAP") as demo:
    shap.initjs()  # load shap JS for interactive plots in some contexts (optional)

    gr.Markdown(
        """
        # **Advanced Virus Host Classifier with SHAP**
        **Upload a FASTA file** with one or more nucleotide sequences. 
        This app will:
        1. Predict each sequence's **host** (human vs. non-human).
        2. Provide **SHAP** explanations (waterfall & beeswarm).
        3. Let you explore **frequency & σ** for top-10 k-mers for a chosen sequence.
        """
    )

    with gr.Row():
        file_input = gr.File(label="Upload FASTA", type="binary")
        run_btn = gr.Button("Run Classification")

    # Store intermediate results in "States" for usage in subsequent tabs
    shap_values_state = gr.State()
    scaled_data_state = gr.State()
    kmer_list_state = gr.State()
    results_state = gr.State()
    # We'll also store the "raw input" so we can reconstruct freq data for each sample
    file_data_state = gr.State()

    # TABS for outputs
    with gr.Tabs():
        with gr.Tab("Results Table"):
            md_out = gr.Markdown()

        with gr.Tab("SHAP Waterfall"):
            # We'll let user pick the sequence index from a dropdown or slider
            with gr.Row():
                seq_index_dropdown = gr.Number(label="Sequence Index (0-based)", value=0, precision=0)
                update_wf_btn = gr.Button("Update Waterfall")

            wf_plot = gr.Image(label="SHAP Waterfall Plot")

        with gr.Tab("SHAP Beeswarm"):
            bs_plot = gr.Image(label="Global Beeswarm Plot", height=500)

        with gr.Tab("Top-10 Frequency & Sigma"):
            with gr.Row():
                seq_index_dropdown2 = gr.Number(label="Sequence Index (0-based)", value=0, precision=0)
                update_fs_btn = gr.Button("Update Frequency Chart")
            fs_plot = gr.Image(label="Top-10 Frequency & σ Chart")

    # --- Button Logic ---
    run_btn.click(
        fn=main_predict,
        inputs=[file_input],
        outputs=[md_out, shap_values_state, scaled_data_state, kmer_list_state, results_state]
    )
    run_btn.click(  # Also store the raw file data for later freq plots
        fn=lambda x: x,
        inputs=file_input,
        outputs=file_data_state
    )

    update_wf_btn.click(
        fn=update_waterfall_plot,
        inputs=[seq_index_dropdown, shap_values_state],
        outputs=[wf_plot]
    )
    update_fs_btn.click(
        fn=update_freq_plot,
        inputs=[seq_index_dropdown2, shap_values_state, scaled_data_state, kmer_list_state, file_data_state],
        outputs=[fs_plot]
    )

    # We can auto-generate the beeswarm right after classification as well
    run_btn.click(
        fn=update_beeswarm_plot,
        inputs=[shap_values_state],
        outputs=[bs_plot]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)