HostClassifier / app.py
hiyata's picture
Update app.py
4a7c026 verified
raw
history blame
7.62 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import shap
import matplotlib.pyplot as plt
import io
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_feature_importance(self, x):
"""Calculate feature importance using gradient-based method"""
x.requires_grad_(True)
output = self.network(x)
importance = torch.zeros_like(x)
for i in range(output.shape[1]):
if x.grad is not None:
x.grad.zero_()
output[..., i].sum().backward(retain_graph=True)
importance += torch.abs(x.grad)
return importance
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert sequence to k-mer frequency vector"""
# Generate all possible k-mers
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
# Initialize vector
vec = np.zeros(len(kmers), dtype=np.float32)
# Count k-mers
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
# Convert to frequencies
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers
return vec
def parse_fasta(text):
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def predict(file_obj):
if file_obj is None:
return "Please upload a FASTA file", None
# Read the file content
try:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
except Exception as e:
return f"Error reading file: {str(e)}", None
# Generate k-mer dictionary
k = 4 # k-mer size
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
# Load model and scaler
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = VirusClassifier(256).to(device) # k=4 -> 4^4 = 256 features
# Load model with explicit map_location
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
# Load scaler
scaler = joblib.load('scaler.pkl')
# Set model to evaluation mode
model.eval()
except Exception as e:
return f"Error loading model: {str(e)}", None
# Initialize variables to store results and plot
results_text = ""
plot_image = None
try:
sequences = parse_fasta(text)
# For simplicity, process only the first sequence for plotting
header, seq = sequences[0]
# Get raw frequency vector and scaled vector
raw_freq_vector = sequence_to_kmer_vector(seq)
kmer_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
X_tensor = torch.FloatTensor(kmer_vector).to(device)
# Get predictions and feature importance
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
importance = model.get_feature_importance(X_tensor)
kmer_importance = importance[0].cpu().numpy()
# Normalize importance scores to original scale
if np.max(np.abs(kmer_importance)) != 0:
kmer_importance = kmer_importance / np.max(np.abs(kmer_importance)) * 0.002
# Get top 10 k-mers based on absolute importance
top_k = 10
top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1]
important_kmers = [
{
'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)],
'importance': float(kmer_importance[i]),
'frequency': float(raw_freq_vector[i]),
'scaled': float(kmer_vector[0][i])
}
for i in top_indices
]
# Prepare SHAP-like values for waterfall plot
top_features = [item['kmer'] for item in important_kmers]
top_values = [item['importance'] for item in important_kmers]
# Combine the rest of the features into an "Others" category
others_mask = np.ones_like(kmer_importance, dtype=bool)
others_mask[top_indices] = False
others_sum = np.sum(kmer_importance[others_mask])
top_features.append("Others")
top_values.append(others_sum)
explanation = shap.Explanation(
values=np.array(top_values),
base_values=0,
data=np.array([raw_freq_vector[kmer_dict[feat]] if feat != "Others" else np.sum(raw_freq_vector[others_mask]) for feat in top_features]),
feature_names=top_features
)
# Generate waterfall plot using SHAP's legacy function
fig = shap.plots._waterfall.waterfall_legacy(explanation, show=False)
# Save plot to a bytes buffer
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
plot_image = buf
# Format textual results for the first sequence
pred_class = 1 if probs[0][1] > probs[0][0] else 0
pred_label = 'human' if pred_class == 1 else 'non-human'
results_text += f"""Sequence: {header}
Prediction: {pred_label}
Confidence: {float(max(probs[0])):0.4f}
Human probability: {float(probs[0][1]):0.4f}
Non-human probability: {float(probs[0][0]):0.4f}
Most influential k-mers (ranked by importance):"""
for kmer in important_kmers:
results_text += f"\n {kmer['kmer']}: "
results_text += f"impact={kmer['importance']:.4f}, "
results_text += f"occurrence={kmer['frequency']*100:.2f}% of sequence "
if kmer['scaled'] > 0:
results_text += f"(appears {abs(kmer['scaled']):.2f}σ more than average)"
else:
results_text += f"(appears {abs(kmer['scaled']):.2f}σ less than average)"
except Exception as e:
return f"Error processing sequences: {str(e)}", None
return results_text, plot_image
# Create the interface with two outputs: Textbox and Image
iface = gr.Interface(
fn=predict,
inputs=gr.File(label="Upload FASTA file", type="binary"),
outputs=[gr.Textbox(label="Results"), gr.Image(label="SHAP Waterfall Plot")],
title="Virus Host Classifier"
)
# Launch the interface
if __name__ == "__main__":
iface.launch()