HostClassifier / app.py
hiyata's picture
Update app.py
8c49ca8 verified
raw
history blame
14 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import io
from PIL import Image
###############################################################################
# Model Definition
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
def get_feature_importance(self, x):
"""
Calculate gradient-based feature importance.
We'll compute the gradient of the 'human' probability w.r.t. the input vector.
"""
x.requires_grad_(True)
output = self.network(x)
probs = torch.softmax(output, dim=1)
# Gradient wrt 'human' class probability (index=1)
human_prob = probs[..., 1]
if x.grad is not None:
x.grad.zero_()
human_prob.backward()
importance = x.grad # shape: (batch_size, n_features)
return importance, float(human_prob)
###############################################################################
# Utility Functions
###############################################################################
def parse_fasta(text):
"""Parses text input in FASTA format into a list of (header, sequence)."""
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""Convert a single nucleotide sequence to a k-mer frequency vector."""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers # normalize frequencies
return vec
###############################################################################
# Visualization
###############################################################################
def create_visualization(important_kmers, human_prob, title):
"""
Create a multi-panel figure showing:
1) A waterfall-like plot for how each top k-mer shifts the probability from 0.5
(the baseline) to the final 'human' probability.
2) A side-by-side bar plot for frequency (%) and σ from mean for each important k-mer.
"""
# Figure & GridSpec Layout
fig = plt.figure(figsize=(14, 10))
gs = plt.GridSpec(2, 2, width_ratios=[1.2, 1], height_ratios=[1.2, 1], hspace=0.35, wspace=0.3)
# -------------------------------------------------------------------------
# 1. Waterfall-like Plot (top-left subplot)
# -------------------------------------------------------------------------
ax_waterfall = plt.subplot(gs[0, 0])
# Start from baseline prob=0.5
baseline = 0.5
current_prob = baseline
steps = [("Baseline", current_prob, 0.0)]
# Build up the step changes
for kmer in important_kmers:
direction_multiplier = 1 if kmer["direction"] == "human" else -1
change = kmer["impact"] * 0.05 * direction_multiplier
# ^ scale changes so that the sum doesn't overshadow the final probability.
current_prob += change
steps.append((kmer["kmer"], current_prob, change))
# X-values for step plot
x_vals = range(len(steps))
y_vals = [s[1] for s in steps]
ax_waterfall.step(x_vals, y_vals, where='post', color='blue', linewidth=2, label='Probability')
ax_waterfall.plot(x_vals, y_vals, 'b.', markersize=8)
# Reference lines
ax_waterfall.axhline(y=baseline, color='gray', linestyle='--', label='Baseline=0.5')
# Annotate each step
for i, (kmer, prob, change) in enumerate(steps):
if i == 0: # baseline
ax_waterfall.annotate(kmer, (i, prob), textcoords="offset points", xytext=(0, -15), ha='center', color='black')
continue
color = "green" if change > 0 else "red"
ax_waterfall.annotate(
f"{kmer}\n({change:+.3f})",
(i, prob),
textcoords="offset points",
xytext=(0, -15),
ha='center',
color=color,
fontsize=9
)
ax_waterfall.set_ylim(0, 1)
ax_waterfall.set_xlabel("k-mer Step")
ax_waterfall.set_ylabel("Running Probability (Human)")
ax_waterfall.set_title(f"K-mer Waterfall Plot — Final Probability: {human_prob:.3f}")
ax_waterfall.grid(alpha=0.3)
ax_waterfall.legend()
# -------------------------------------------------------------------------
# 2. Frequency & σ from Mean (top-right subplot)
# -------------------------------------------------------------------------
ax_bar = plt.subplot(gs[0, 1])
kmers = [k["kmer"] for k in important_kmers]
frequencies = [k["occurrence"] for k in important_kmers] # in %
sigmas = [k["sigma"] for k in important_kmers]
directions = [k["direction"] for k in important_kmers]
# X-locations
x = np.arange(len(kmers))
width = 0.4
# We will create twin axes: one for frequency, one for σ
bars1 = ax_bar.bar(x - width/2, frequencies, width, label='Frequency (%)',
alpha=0.7, color=['green' if d=='human' else 'red' for d in directions])
ax_bar.set_ylabel("Frequency (%)")
ax_bar.set_ylim(0, max(frequencies) * 1.2 if frequencies else 1)
ax_bar.set_title("Frequency vs. σ from Mean")
# Twin axis for σ
ax_bar_twin = ax_bar.twinx()
bars2 = ax_bar_twin.bar(x + width/2, sigmas, width, label='σ from Mean',
alpha=0.5, color='gray')
ax_bar_twin.set_ylabel("Standard Deviations (σ)")
ax_bar.set_xticks(x)
ax_bar.set_xticklabels(kmers, rotation=45, ha='right', fontsize=9)
# Combine legends
lines1, labels1 = ax_bar.get_legend_handles_labels()
lines2, labels2 = ax_bar_twin.get_legend_handles_labels()
ax_bar.legend(lines1 + lines2, labels1 + labels2, loc='upper right')
# -------------------------------------------------------------------------
# 3. Top Feature Importances (Bottom, spanning both columns)
# -------------------------------------------------------------------------
ax_imp = plt.subplot(gs[1, :])
# Sort by absolute impact
sorted_kmers = sorted(important_kmers, key=lambda x: x['impact'], reverse=True)
top_kmer_labels = [k['kmer'] for k in sorted_kmers]
top_kmer_impacts = [k['impact'] for k in sorted_kmers]
top_kmer_dirs = [k['direction'] for k in sorted_kmers]
x_imp = np.arange(len(top_kmer_impacts))
bar_colors = ['green' if d == 'human' else 'red' for d in top_kmer_dirs]
ax_imp.bar(x_imp, top_kmer_impacts, color=bar_colors, alpha=0.7)
ax_imp.set_xticks(x_imp)
ax_imp.set_xticklabels(top_kmer_labels, rotation=45, ha='right', fontsize=9)
ax_imp.set_title("Absolute Feature Importance (Top k-mers)")
ax_imp.set_ylabel("Importance (gradient magnitude)")
ax_imp.grid(alpha=0.3, axis='y')
plt.suptitle(title, fontsize=14, y=1.02)
plt.tight_layout()
return fig
###############################################################################
# Prediction Function
###############################################################################
def predict(file_obj):
"""
Main function that Gradio will call:
1. Reads the uploaded FASTA file (or text).
2. Loads the model and scaler.
3. Generates predictions, probabilities, and top k-mers.
4. Creates a summary text and a matplotlib figure for visualization.
"""
if file_obj is None:
return "Please upload a FASTA file.", None
# Read text from file
try:
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
except Exception as e:
return f"Error reading file: {str(e)}", None
# Build k-mer dictionary
k = 4
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
# Load model & scaler
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = VirusClassifier(256).to(device)
state_dict = torch.load('model.pt', map_location=device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
model.eval()
except Exception as e:
return f"Error loading model or scaler: {str(e)}", None
results_text = ""
plot_image = None
try:
# Parse FASTA
sequences = parse_fasta(text)
if len(sequences) == 0:
return "No valid FASTA sequences found. Please check your input.", None
header, seq = sequences[0] # For simplicity, we'll only classify the first sequence
# Transform sequence to scaled k-mer vector
raw_freq_vector = sequence_to_kmer_vector(seq)
kmer_vector = scaler.transform(raw_freq_vector.reshape(1, -1))
X_tensor = torch.FloatTensor(kmer_vector).to(device)
# Inference
with torch.no_grad():
output = model(X_tensor)
probs = torch.softmax(output, dim=1)
# Feature Importance
importance, hum_prob_grad = model.get_feature_importance(X_tensor)
kmer_importance = importance[0].cpu().numpy() # shape: (256,)
# Top k-mers by absolute importance
top_k = 10
top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1] # largest -> smallest
important_kmers = []
for idx in top_indices:
# find corresponding k-mer by index
for kmer_str, i_ in kmer_dict.items():
if i_ == idx:
kmer_name = kmer_str
break
imp_val = float(abs(kmer_importance[idx]))
direction = 'human' if kmer_importance[idx] > 0 else 'non-human'
freq = float(raw_freq_vector[idx] * 100) # frequency in %
sigma = float(kmer_vector[0][idx]) # scaled value (Z-score if standard scaler)
important_kmers.append({
'kmer': kmer_name,
'impact': imp_val,
'direction': direction,
'occurrence': freq,
'sigma': sigma
})
pred_class = 1 if probs[0][1] > probs[0][0] else 0
pred_label = 'human' if pred_class == 1 else 'non-human'
human_prob = float(probs[0][1])
non_human_prob = float(probs[0][0])
conf = float(max(probs[0])) # confidence in the predicted class
# Generate text results
results_text = (
f"**Sequence Header**: {header}\n\n"
f"**Predicted Label**: {pred_label}\n"
f"**Confidence**: {conf:.4f}\n\n"
f"**Human Probability**: {human_prob:.4f}\n"
f"**Non-human Probability**: {non_human_prob:.4f}\n\n"
"### Most Influential k-mers:\n"
)
for k in important_kmers:
direction_text = f"pushes toward {k['direction']}"
occurrence_text = f"{k['occurrence']:.2f}% of sequence"
sigma_text = f"{abs(k['sigma']):.2f}σ " + ("above" if k['sigma'] > 0 else "below") + " mean"
results_text += (
f"- **{k['kmer']}**: "
f"impact = {k['impact']:.4f}, {direction_text}, "
f"occurrence = {occurrence_text}, "
f"({sigma_text})\n"
)
# Create figure
fig = create_visualization(important_kmers, human_prob, f"{header}")
# Convert figure to image
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
plot_image = Image.open(buf)
plt.close(fig)
except Exception as e:
return f"Error during prediction or visualization: {str(e)}", None
return results_text, plot_image
###############################################################################
# Gradio Interface
###############################################################################
iface = gr.Interface(
fn=predict,
inputs=gr.File(label="Upload FASTA file", type="binary"),
outputs=[
gr.Markdown(label="Prediction Results"),
gr.Image(label="K-mer Analysis Visualization")
],
title="Virus Host Classifier",
description=(
"Upload a FASTA file containing a single nucleotide sequence. "
"This model will predict whether the virus host is **human** or **non-human**, "
"provide a confidence score, and highlight the most influential k-mers in the classification."
),
allow_flagging="never",
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)