HostClassifier / app.py
hiyata's picture
Update app.py
afbf1c6 verified
raw
history blame
18.2 kB
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib
matplotlib.use("Agg") # In case we're running in a no-display environment
import matplotlib.pyplot as plt
import io
from PIL import Image
import shap
###############################################################################
# Model Definition
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# Torch Model Wrapper for SHAP
###############################################################################
class TorchModelWrapper:
"""
A simple callable that takes a PyTorch model and device,
allowing SHAP to pass in NumPy arrays. We convert them
to torch tensors, run the model, and return NumPy outputs.
"""
def __init__(self, model: nn.Module, device='cpu'):
self.model = model
self.device = device
def __call__(self, x_np: np.ndarray):
"""
x_np: shape=(batch_size, num_features) as a numpy array
Returns: numpy array of shape=(batch_size, num_outputs)
"""
x_torch = torch.from_numpy(x_np).float().to(self.device)
with torch.no_grad():
out = self.model(x_torch).cpu().numpy()
return out
###############################################################################
# Utility Functions
###############################################################################
def parse_fasta(text):
"""
Parses text input in FASTA format into a list of (header, sequence).
Handles multiple sequences if present.
"""
sequences = []
current_header = None
current_sequence = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
"""
Convert a single nucleotide sequence to a k-mer frequency vector
of length 4^k (e.g., for k=4, length=256).
"""
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec = vec / total_kmers # normalize frequencies
return vec
###############################################################################
# Visualization Helpers
###############################################################################
def create_freq_sigma_plot(
single_shap_values: np.ndarray,
raw_freq_vector: np.ndarray,
scaled_vector: np.ndarray,
kmer_list,
title: str
):
"""
Creates a bar plot showing top-10 k-mers (by absolute SHAP value),
with frequency (%) and sigma from mean on a twin-axis.
single_shap_values: shape=(256,) SHAP values for the "human" class
raw_freq_vector: shape=(256,) original frequencies for this sample
scaled_vector: shape=(256,) scaled (Z-score) values for this sample
kmer_list: list of length=256 of all k-mers
"""
# Identify the top 10 k-mers by absolute shap
abs_vals = np.abs(single_shap_values) # shape=(256,)
top_k = 10
top_indices = np.argsort(abs_vals)[-top_k:][::-1] # indices of largest -> smallest
top_data = []
for idx in top_indices:
idx_int = int(idx) # ensure integer
top_data.append({
"kmer": kmer_list[idx_int],
"shap": single_shap_values[idx_int],
"abs_shap": abs_vals[idx_int],
"frequency": raw_freq_vector[idx_int] * 100.0, # percentage
"sigma": scaled_vector[idx_int]
})
# Sort top_data by abs_shap descending
top_data.sort(key=lambda x: x["abs_shap"], reverse=True)
# Prepare for plotting
kmers = [d["kmer"] for d in top_data]
freqs = [d["frequency"] for d in top_data]
sigmas = [d["sigma"] for d in top_data]
# color by sign (positive=green => pushes "human", negative=red => pushes "non-human")
colors = ["green" if d["shap"] >= 0 else "red" for d in top_data]
x = np.arange(len(kmers))
width = 0.4
fig, ax = plt.subplots(figsize=(8, 5))
# Frequency
ax.bar(
x - width/2, freqs, width, color=colors, alpha=0.7, label="Frequency (%)"
)
ax.set_ylabel("Frequency (%)", color='black')
if len(freqs) > 0:
ax.set_ylim(0, max(freqs)*1.2)
# Twin axis for sigma
ax2 = ax.twinx()
ax2.bar(
x + width/2, sigmas, width, color="gray", alpha=0.5, label="σ from Mean"
)
ax2.set_ylabel("Standard Deviations (σ)", color='black')
ax.set_xticks(x)
ax.set_xticklabels(kmers, rotation=45, ha='right')
ax.set_title(f"Top-10 K-mers (Frequency & σ)\n{title}")
# Combine legends
lines1, labels1 = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax.legend(lines1 + lines2, labels1 + labels2, loc='upper right')
plt.tight_layout()
return fig
###############################################################################
# Main Inference & SHAP Logic
###############################################################################
def run_classification_and_shap(file_obj):
"""
Reads one or more FASTA sequences from file_obj or text.
Returns:
- Table of results (list of dicts) for each sequence
- shap_values object (SHAP values for the entire batch, shape=(num_samples, 2, num_features))
- array of scaled vectors
- list of k-mers
- error message or None
"""
# 1. Basic read
if isinstance(file_obj, str):
text = file_obj
else:
try:
text = file_obj.decode("utf-8")
except Exception as e:
return None, None, None, None, f"Error reading file: {str(e)}"
# 2. Parse FASTA
sequences = parse_fasta(text)
if len(sequences) == 0:
return None, None, None, None, "No valid FASTA sequences found!"
# 3. Convert each sequence to k-mer vector
k = 4
all_raw_vectors = []
headers = []
seqs = []
for (hdr, seq) in sequences:
raw_vec = sequence_to_kmer_vector(seq, k=k)
all_raw_vectors.append(raw_vec)
headers.append(hdr)
seqs.append(seq)
all_raw_vectors = np.stack(all_raw_vectors, axis=0) # shape=(num_seqs, 256)
# 4. Load model & scaler
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = VirusClassifier(input_shape=4**k).to(device)
# Use weights_only=True to suppress future warnings about untrusted pickles
state_dict = torch.load("model.pt", map_location=device, weights_only=True)
model.load_state_dict(state_dict)
model.eval()
scaler = joblib.load("scaler.pkl")
except Exception as e:
return None, None, None, None, f"Error loading model or scaler: {str(e)}"
# 5. Scale data
scaled_data = scaler.transform(all_raw_vectors) # shape=(num_seqs, 256)
# 6. Predictions
X_tensor = torch.FloatTensor(scaled_data).to(device)
with torch.no_grad():
logits = model(X_tensor)
# shape=(num_seqs, 2)
probs = torch.softmax(logits, dim=1).cpu().numpy()
preds = np.argmax(probs, axis=1) # 0 or 1
results_table = []
for i, (hdr, seq) in enumerate(zip(headers, seqs)):
results_table.append({
"header": hdr,
"sequence": seq[:50] + ("..." if len(seq) > 50 else ""),
"pred_label": "human" if preds[i] == 1 else "non-human",
"human_prob": float(probs[i][1]),
"non_human_prob": float(probs[i][0]),
"confidence": float(np.max(probs[i]))
})
# 7. SHAP Explainer
# For large data, pick a smaller background subset
if scaled_data.shape[0] > 50:
background_data = scaled_data[:50]
else:
background_data = scaled_data
wrapped_model = TorchModelWrapper(model, device)
explainer = shap.Explainer(wrapped_model, background_data)
# shap_values shape=(num_samples, num_features) if single-output
# but here we have 2 outputs => shape=(num_samples, 2, num_features).
shap_values = explainer(scaled_data)
# Prepare k-mer list
kmer_list = [''.join(p) for p in product("ACGT", repeat=k)]
# Return everything
return (results_table, shap_values, scaled_data, kmer_list, None)
###############################################################################
# Gradio Callback Functions
###############################################################################
def main_predict(file_obj):
"""
Triggered by the 'Run Classification' button in Gradio.
Returns a markdown table plus states for subsequent plots.
"""
results, shap_vals, scaled_data, kmer_list, err = run_classification_and_shap(file_obj)
if err:
return (err, None, None, None, None)
if results is None or shap_vals is None:
return ("An unknown error occurred.", None, None, None, None)
# Build a summary for all sequences
md = "# Classification Results\n\n"
md += "| # | Header | Pred Label | Confidence | Human Prob | Non-human Prob |\n"
md += "|---|--------|------------|------------|------------|----------------|\n"
for i, row in enumerate(results):
md += (
f"| {i} | {row['header']} | {row['pred_label']} | "
f"{row['confidence']:.4f} | {row['human_prob']:.4f} | {row['non_human_prob']:.4f} |\n"
)
md += "\nSelect a sequence index below to view SHAP Waterfall & Frequency plots (class=1/human)."
return (md, shap_vals, scaled_data, kmer_list, results)
def update_waterfall_plot(selected_index, shap_values_obj):
"""
Build a waterfall plot for the user-selected sample, but ONLY for class=1 (human).
shap_values_obj has shape=(num_samples, 2, num_features).
We do shap_values_obj[selected_index, 1] => shape=(num_features,)
for a single-sample single-class explanation.
"""
if shap_values_obj is None:
return None
import matplotlib.pyplot as plt
try:
selected_index = int(selected_index)
except:
selected_index = 0
# We only visualize class=1 ("human") SHAP values
# shap_values_obj.values shape => (num_samples, 2, num_features)
single_ex_values = shap_values_obj.values[selected_index, 1, :] # shape=(256,)
single_ex_base = shap_values_obj.base_values[selected_index, 1] # scalar
single_ex_data = shap_values_obj.data[selected_index] # shape=(256,)
# Construct a shap.Explanation object for just this one sample & class
single_expl = shap.Explanation(
values=single_ex_values,
base_values=single_ex_base,
data=single_ex_data,
feature_names=[f"feat_{i}" for i in range(single_ex_values.shape[0])]
)
shap_plots_fig = plt.figure(figsize=(8, 5))
shap.plots.waterfall(single_expl, max_display=14, show=False)
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=120)
buf.seek(0)
wf_img = Image.open(buf)
plt.close(shap_plots_fig)
return wf_img
def update_beeswarm_plot(shap_values_obj):
"""
Build a beeswarm plot across all samples, but only for class=1 (human).
We slice shap_values_obj to pick shap_values_obj.values[:, 1, :]
=> shape=(num_samples, num_features).
"""
if shap_values_obj is None:
return None
import matplotlib.pyplot as plt
# For multi-output, shap_values_obj.values shape => (num_samples, 2, num_features)
# We'll create a new Explanation object for class=1:
class1_vals = shap_values_obj.values[:, 1, :] # shape=(num_samples, num_features)
class1_base = shap_values_obj.base_values[:, 1] # shape=(num_samples,)
class1_data = shap_values_obj.data # shape=(num_samples, num_features)
# Some versions of shap store data in a 2D array, which is fine
# We'll re-wrap them in a shap.Explanation:
class1_expl = shap.Explanation(
values=class1_vals,
base_values=class1_base,
data=class1_data,
feature_names=[f"feat_{i}" for i in range(class1_vals.shape[1])]
)
beeswarm_fig = plt.figure(figsize=(8, 5))
shap.plots.beeswarm(class1_expl, show=False)
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=120)
buf.seek(0)
bs_img = Image.open(buf)
plt.close(beeswarm_fig)
return bs_img
def update_freq_plot(selected_index, shap_values_obj, scaled_data, kmer_list, file_obj):
"""
Create the frequency & σ bar chart for the selected sequence's top-10 k-mers (by abs SHAP).
Again, we'll use class=1 SHAP values only.
"""
if shap_values_obj is None or scaled_data is None or kmer_list is None:
return None
import matplotlib.pyplot as plt
try:
selected_index = int(selected_index)
except:
selected_index = 0
# Re-parse the FASTA to get the corresponding sequence
if isinstance(file_obj, str):
text = file_obj
else:
text = file_obj.decode('utf-8')
sequences = parse_fasta(text)
# If out of range, clamp to 0
if selected_index >= len(sequences):
selected_index = 0
seq = sequences[selected_index][1]
raw_vec = sequence_to_kmer_vector(seq, k=4) # shape=(256,)
# SHAP for class=1 => shape=(num_samples, 2, 256)
single_shap_values = shap_values_obj.values[selected_index, 1, :]
freq_sigma_fig = create_freq_sigma_plot(
single_shap_values,
raw_freq_vector=raw_vec,
scaled_vector=scaled_data[selected_index],
kmer_list=kmer_list,
title=f"Sample #{selected_index}{sequences[selected_index][0]}"
)
buf = io.BytesIO()
freq_sigma_fig.savefig(buf, format='png', bbox_inches='tight', dpi=120)
buf.seek(0)
fs_img = Image.open(buf)
plt.close(freq_sigma_fig)
return fs_img
###############################################################################
# Gradio Interface
###############################################################################
with gr.Blocks(title="Multi-Sequence Virus Host Classifier with SHAP") as demo:
shap.initjs() # load shap JS if needed for HTML-based plots (optional)
gr.Markdown(
"""
# **irus Host Classifier**
Upload a FASTA file with one or more nucleotide sequences.
This app will:
1. Predict each sequence's **host** (human vs. non-human).
2. Provide **SHAP** explanations focusing on the 'human' class (index=1).
3. Display:
- A **waterfall** plot per-sequence (top features).
- A **beeswarm** plot across all sequences (global summary).
- A **frequency & σ** bar chart for the top-10 k-mers of any selected sequence.
"""
)
with gr.Row():
file_input = gr.File(label="Upload FASTA", type="binary")
run_btn = gr.Button("Run Classification")
# Store intermediate results in Gradio states
shap_values_state = gr.State()
scaled_data_state = gr.State()
kmer_list_state = gr.State()
results_state = gr.State()
file_data_state = gr.State()
with gr.Tabs():
with gr.Tab("Results Table"):
md_out = gr.Markdown()
with gr.Tab("SHAP Waterfall"):
with gr.Row():
seq_index_input = gr.Number(label="Sequence Index (0-based)", value=0, precision=0)
update_wf_btn = gr.Button("Update Waterfall")
wf_plot = gr.Image(label="SHAP Waterfall Plot")
with gr.Tab("SHAP Beeswarm"):
bs_plot = gr.Image(label="Global Beeswarm Plot", height=500)
with gr.Tab("Top-10 Frequency & Sigma"):
with gr.Row():
seq_index_input2 = gr.Number(label="Sequence Index (0-based)", value=0, precision=0)
update_fs_btn = gr.Button("Update Frequency Chart")
fs_plot = gr.Image(label="Top-10 Frequency & σ Chart")
# 1) Main classification
run_btn.click(
fn=main_predict,
inputs=[file_input],
outputs=[md_out, shap_values_state, scaled_data_state, kmer_list_state, results_state]
)
run_btn.click(
fn=lambda x: x,
inputs=file_input,
outputs=file_data_state
)
# 2) Update Waterfall
update_wf_btn.click(
fn=update_waterfall_plot,
inputs=[seq_index_input, shap_values_state],
outputs=[wf_plot]
)
# 3) Update Beeswarm right after classification
run_btn.click(
fn=update_beeswarm_plot,
inputs=[shap_values_state],
outputs=[bs_plot]
)
# 4) Update Frequency & σ
update_fs_btn.click(
fn=update_freq_plot,
inputs=[seq_index_input2, shap_values_state, scaled_data_state, kmer_list_state, file_data_state],
outputs=[fs_plot]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)