Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -571,6 +571,18 @@ def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""):
|
|
571 |
# 11. GENE FEATURE ANALYSIS
|
572 |
###############################################################################
|
573 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
def parse_gene_features(text: str) -> List[Dict[str, Any]]:
|
575 |
"""Parse gene features from text file in FASTA-like format"""
|
576 |
genes = []
|
@@ -643,174 +655,6 @@ def compute_gene_statistics(gene_shap: np.ndarray) -> Dict[str, float]:
|
|
643 |
'pos_fraction': float(np.mean(gene_shap > 0))
|
644 |
}
|
645 |
|
646 |
-
def create_simple_genome_diagram(gene_results: List[Dict[str, Any]], genome_length: int) -> Image.Image:
|
647 |
-
"""
|
648 |
-
Create a simple genome diagram using PIL, forcing a minimum color intensity
|
649 |
-
so that small SHAP values don't appear white.
|
650 |
-
"""
|
651 |
-
from PIL import Image, ImageDraw, ImageFont
|
652 |
-
|
653 |
-
# Validate inputs
|
654 |
-
if not gene_results or genome_length <= 0:
|
655 |
-
img = Image.new('RGB', (800, 100), color='white')
|
656 |
-
draw = ImageDraw.Draw(img)
|
657 |
-
draw.text((10, 40), "Error: Invalid input data", fill='black')
|
658 |
-
return img
|
659 |
-
|
660 |
-
# Ensure all gene coordinates are valid integers
|
661 |
-
for gene in gene_results:
|
662 |
-
gene['start'] = max(0, int(gene['start']))
|
663 |
-
gene['end'] = min(genome_length, int(gene['end']))
|
664 |
-
if gene['start'] >= gene['end']:
|
665 |
-
print(f"Warning: Invalid coordinates for gene {gene.get('gene_name','?')}: {gene['start']}-{gene['end']}")
|
666 |
-
|
667 |
-
# Image dimensions
|
668 |
-
width = 1500
|
669 |
-
height = 600
|
670 |
-
margin = 50
|
671 |
-
track_height = 40
|
672 |
-
|
673 |
-
# Create image with white background
|
674 |
-
img = Image.new('RGB', (width, height), 'white')
|
675 |
-
draw = ImageDraw.Draw(img)
|
676 |
-
|
677 |
-
# Try to load font, fall back to default if unavailable
|
678 |
-
try:
|
679 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 12)
|
680 |
-
title_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
|
681 |
-
except:
|
682 |
-
font = ImageFont.load_default()
|
683 |
-
title_font = ImageFont.load_default()
|
684 |
-
|
685 |
-
# Draw title
|
686 |
-
draw.text((margin, margin // 2), "Genome SHAP Analysis", fill='black', font=title_font or font)
|
687 |
-
|
688 |
-
# Draw genome line
|
689 |
-
line_y = height // 2
|
690 |
-
draw.line([(int(margin), int(line_y)), (int(width - margin), int(line_y))], fill='black', width=2)
|
691 |
-
|
692 |
-
# Calculate scale factor
|
693 |
-
scale = float(width - 2 * margin) / float(genome_length)
|
694 |
-
|
695 |
-
# Determine a reasonable step for scale markers
|
696 |
-
num_ticks = 10
|
697 |
-
if genome_length < num_ticks:
|
698 |
-
step = 1
|
699 |
-
else:
|
700 |
-
step = genome_length // num_ticks
|
701 |
-
|
702 |
-
# Draw scale markers
|
703 |
-
for i in range(0, genome_length + 1, step):
|
704 |
-
x_coord = margin + i * scale
|
705 |
-
draw.line([
|
706 |
-
(int(x_coord), int(line_y - 5)),
|
707 |
-
(int(x_coord), int(line_y + 5))
|
708 |
-
], fill='black', width=1)
|
709 |
-
draw.text((int(x_coord - 20), int(line_y + 10)), f"{i:,}", fill='black', font=font)
|
710 |
-
|
711 |
-
# Sort genes by absolute SHAP value for drawing
|
712 |
-
sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']))
|
713 |
-
|
714 |
-
# Draw genes
|
715 |
-
for idx, gene in enumerate(sorted_genes):
|
716 |
-
# Calculate position and ensure integers
|
717 |
-
start_x = margin + int(gene['start'] * scale)
|
718 |
-
end_x = margin + int(gene['end'] * scale)
|
719 |
-
|
720 |
-
# Calculate color based on SHAP value
|
721 |
-
avg_shap = gene['avg_shap']
|
722 |
-
|
723 |
-
# Convert shap -> color intensity (0 to 255)
|
724 |
-
# Then clamp to a minimum intensity so it never ends up plain white
|
725 |
-
intensity = int(abs(avg_shap) * 500)
|
726 |
-
intensity = max(50, min(255, intensity)) # clamp between 50 and 255
|
727 |
-
|
728 |
-
if avg_shap > 0:
|
729 |
-
# Red-ish for positive
|
730 |
-
color = (255, 255 - intensity, 255 - intensity)
|
731 |
-
else:
|
732 |
-
# Blue-ish for negative or zero
|
733 |
-
color = (255 - intensity, 255 - intensity, 255)
|
734 |
-
|
735 |
-
# Draw gene rectangle
|
736 |
-
draw.rectangle([
|
737 |
-
(int(start_x), int(line_y - track_height // 2)),
|
738 |
-
(int(end_x), int(line_y + track_height // 2))
|
739 |
-
], fill=color, outline='black')
|
740 |
-
|
741 |
-
# Prepare gene name label
|
742 |
-
label = str(gene.get('gene_name','?'))
|
743 |
-
|
744 |
-
# If getsize() or textsize() is missing, use getmask(...).size as fallback
|
745 |
-
# But if your Pillow version supports font.getsize, you can do:
|
746 |
-
# label_width, label_height = font.getsize(label)
|
747 |
-
label_mask = font.getmask(label)
|
748 |
-
label_width, label_height = label_mask.size
|
749 |
-
|
750 |
-
# Alternate label positions above/below line
|
751 |
-
if idx % 2 == 0:
|
752 |
-
text_y = line_y - track_height - 15
|
753 |
-
else:
|
754 |
-
text_y = line_y + track_height + 5
|
755 |
-
|
756 |
-
# Decide whether to rotate text based on space
|
757 |
-
gene_width = end_x - start_x
|
758 |
-
if gene_width > label_width:
|
759 |
-
text_x = start_x + (gene_width - label_width) // 2
|
760 |
-
draw.text((int(text_x), int(text_y)), label, fill='black', font=font)
|
761 |
-
elif gene_width > 20:
|
762 |
-
txt_img = Image.new('RGBA', (label_width, label_height), (255, 255, 255, 0))
|
763 |
-
txt_draw = ImageDraw.Draw(txt_img)
|
764 |
-
txt_draw.text((0, 0), label, font=font, fill='black')
|
765 |
-
rotated_img = txt_img.rotate(90, expand=True)
|
766 |
-
img.paste(rotated_img, (int(start_x), int(text_y)), rotated_img)
|
767 |
-
|
768 |
-
# Draw legend
|
769 |
-
legend_x = margin
|
770 |
-
legend_y = height - margin
|
771 |
-
draw.text((int(legend_x), int(legend_y - 60)), "SHAP Values:", fill='black', font=font)
|
772 |
-
|
773 |
-
# Draw legend boxes
|
774 |
-
box_width = 20
|
775 |
-
box_height = 20
|
776 |
-
spacing = 15
|
777 |
-
|
778 |
-
# Strong human-like
|
779 |
-
draw.rectangle([
|
780 |
-
(int(legend_x), int(legend_y - 45)),
|
781 |
-
(int(legend_x + box_width), int(legend_y - 45 + box_height))
|
782 |
-
], fill=(255, 0, 0), outline='black')
|
783 |
-
draw.text((int(legend_x + box_width + spacing), int(legend_y - 45)),
|
784 |
-
"Strong human-like signal", fill='black', font=font)
|
785 |
-
|
786 |
-
# Weak human-like
|
787 |
-
draw.rectangle([
|
788 |
-
(int(legend_x), int(legend_y - 20)),
|
789 |
-
(int(legend_x + box_width), int(legend_y - 20 + box_height))
|
790 |
-
], fill=(255, 200, 200), outline='black')
|
791 |
-
draw.text((int(legend_x + box_width + spacing), int(legend_y - 20)),
|
792 |
-
"Weak human-like signal", fill='black', font=font)
|
793 |
-
|
794 |
-
# Weak non-human-like
|
795 |
-
draw.rectangle([
|
796 |
-
(int(legend_x + 250), int(legend_y - 45)),
|
797 |
-
(int(legend_x + 250 + box_width), int(legend_y - 45 + box_height))
|
798 |
-
], fill=(200, 200, 255), outline='black')
|
799 |
-
draw.text((int(legend_x + 250 + box_width + spacing), int(legend_y - 45)),
|
800 |
-
"Weak non-human-like signal", fill='black', font=font)
|
801 |
-
|
802 |
-
# Strong non-human-like
|
803 |
-
draw.rectangle([
|
804 |
-
(int(legend_x + 250), int(legend_y - 20)),
|
805 |
-
(int(legend_x + 250 + box_width), int(legend_y - 20 + box_height))
|
806 |
-
], fill=(0, 0, 255), outline='black')
|
807 |
-
draw.text((int(legend_x + 250 + box_width + spacing), int(legend_y - 20)),
|
808 |
-
"Strong non-human-like signal", fill='black', font=font)
|
809 |
-
|
810 |
-
return img
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
def create_simple_genome_diagram(gene_results, genome_length):
|
815 |
from PIL import Image, ImageDraw, ImageFont
|
816 |
|
@@ -958,6 +802,121 @@ def create_simple_genome_diagram(gene_results, genome_length):
|
|
958 |
return img
|
959 |
|
960 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
961 |
|
962 |
###############################################################################
|
963 |
# 12. DOWNLOAD FUNCTIONS
|
|
|
571 |
# 11. GENE FEATURE ANALYSIS
|
572 |
###############################################################################
|
573 |
|
574 |
+
import io
|
575 |
+
from io import BytesIO
|
576 |
+
from PIL import Image, ImageDraw, ImageFont
|
577 |
+
import numpy as np
|
578 |
+
import pandas as pd
|
579 |
+
import tempfile
|
580 |
+
import os
|
581 |
+
from typing import List, Dict, Tuple, Optional, Any
|
582 |
+
import matplotlib.pyplot as plt
|
583 |
+
from matplotlib.colors import LinearSegmentedColormap
|
584 |
+
import seaborn as sns
|
585 |
+
|
586 |
def parse_gene_features(text: str) -> List[Dict[str, Any]]:
|
587 |
"""Parse gene features from text file in FASTA-like format"""
|
588 |
genes = []
|
|
|
655 |
'pos_fraction': float(np.mean(gene_shap > 0))
|
656 |
}
|
657 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
658 |
def create_simple_genome_diagram(gene_results, genome_length):
|
659 |
from PIL import Image, ImageDraw, ImageFont
|
660 |
|
|
|
802 |
return img
|
803 |
|
804 |
|
805 |
+
def analyze_gene_features(sequence_file: str,
|
806 |
+
features_file: str,
|
807 |
+
fasta_text: str = "",
|
808 |
+
features_text: str = "") -> Tuple[str, Optional[str], Optional[Image.Image]]:
|
809 |
+
"""Analyze SHAP values for each gene feature"""
|
810 |
+
# First analyze whole sequence
|
811 |
+
sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
|
812 |
+
if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
|
813 |
+
return f"Error in sequence analysis: {sequence_results[0]}", None, None
|
814 |
+
|
815 |
+
# Get SHAP values
|
816 |
+
shap_means = sequence_results[3]["shap_means"]
|
817 |
+
|
818 |
+
# Parse gene features
|
819 |
+
try:
|
820 |
+
if features_text.strip():
|
821 |
+
genes = parse_gene_features(features_text)
|
822 |
+
else:
|
823 |
+
with open(features_file, 'r') as f:
|
824 |
+
genes = parse_gene_features(f.read())
|
825 |
+
except Exception as e:
|
826 |
+
return f"Error reading features file: {str(e)}", None, None
|
827 |
+
|
828 |
+
# Analyze each gene
|
829 |
+
gene_results = []
|
830 |
+
for gene in genes:
|
831 |
+
try:
|
832 |
+
location = gene['metadata'].get('location', '')
|
833 |
+
if not location:
|
834 |
+
continue
|
835 |
+
|
836 |
+
start, end = parse_location(location)
|
837 |
+
if start is None or end is None:
|
838 |
+
continue
|
839 |
+
|
840 |
+
# Get SHAP values for this region
|
841 |
+
gene_shap = shap_means[start:end]
|
842 |
+
stats = compute_gene_statistics(gene_shap)
|
843 |
+
|
844 |
+
gene_results.append({
|
845 |
+
'gene_name': gene['metadata'].get('gene', 'Unknown'),
|
846 |
+
'location': location,
|
847 |
+
'start': start,
|
848 |
+
'end': end,
|
849 |
+
'locus_tag': gene['metadata'].get('locus_tag', ''),
|
850 |
+
'avg_shap': stats['avg_shap'],
|
851 |
+
'median_shap': stats['median_shap'],
|
852 |
+
'std_shap': stats['std_shap'],
|
853 |
+
'max_shap': stats['max_shap'],
|
854 |
+
'min_shap': stats['min_shap'],
|
855 |
+
'pos_fraction': stats['pos_fraction'],
|
856 |
+
'classification': 'Human' if stats['avg_shap'] > 0 else 'Non-human',
|
857 |
+
'confidence': abs(stats['avg_shap'])
|
858 |
+
})
|
859 |
+
|
860 |
+
except Exception as e:
|
861 |
+
print(f"Error processing gene {gene['metadata'].get('gene', 'Unknown')}: {str(e)}")
|
862 |
+
continue
|
863 |
+
|
864 |
+
if not gene_results:
|
865 |
+
return "No valid genes could be processed", None, None
|
866 |
+
|
867 |
+
# Sort genes by absolute SHAP value
|
868 |
+
sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']), reverse=True)
|
869 |
+
|
870 |
+
# Create results text
|
871 |
+
results_text = "Gene Analysis Results:\n\n"
|
872 |
+
results_text += f"Total genes analyzed: {len(gene_results)}\n"
|
873 |
+
results_text += f"Human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Human')}\n"
|
874 |
+
results_text += f"Non-human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Non-human')}\n\n"
|
875 |
+
|
876 |
+
results_text += "Top 10 most distinctive genes:\n"
|
877 |
+
for gene in sorted_genes[:10]:
|
878 |
+
results_text += (
|
879 |
+
f"Gene: {gene['gene_name']}\n"
|
880 |
+
f"Location: {gene['location']}\n"
|
881 |
+
f"Classification: {gene['classification']} "
|
882 |
+
f"(confidence: {gene['confidence']:.4f})\n"
|
883 |
+
f"Average SHAP: {gene['avg_shap']:.4f}\n\n"
|
884 |
+
)
|
885 |
+
|
886 |
+
# Create CSV content
|
887 |
+
csv_content = "gene_name,location,avg_shap,median_shap,std_shap,max_shap,min_shap,"
|
888 |
+
csv_content += "pos_fraction,classification,confidence,locus_tag\n"
|
889 |
+
|
890 |
+
for gene in gene_results:
|
891 |
+
csv_content += (
|
892 |
+
f"{gene['gene_name']},{gene['location']},{gene['avg_shap']:.4f},"
|
893 |
+
f"{gene['median_shap']:.4f},{gene['std_shap']:.4f},{gene['max_shap']:.4f},"
|
894 |
+
f"{gene['min_shap']:.4f},{gene['pos_fraction']:.4f},{gene['classification']},"
|
895 |
+
f"{gene['confidence']:.4f},{gene['locus_tag']}\n"
|
896 |
+
)
|
897 |
+
|
898 |
+
# Save CSV to temp file
|
899 |
+
try:
|
900 |
+
temp_dir = tempfile.gettempdir()
|
901 |
+
temp_path = os.path.join(temp_dir, f"gene_analysis_{os.urandom(4).hex()}.csv")
|
902 |
+
|
903 |
+
with open(temp_path, 'w') as f:
|
904 |
+
f.write(csv_content)
|
905 |
+
except Exception as e:
|
906 |
+
print(f"Error saving CSV: {str(e)}")
|
907 |
+
temp_path = None
|
908 |
+
|
909 |
+
# Create visualization
|
910 |
+
try:
|
911 |
+
diagram_img = create_simple_genome_diagram(gene_results, len(shap_means))
|
912 |
+
except Exception as e:
|
913 |
+
print(f"Error creating visualization: {str(e)}")
|
914 |
+
# Create error image
|
915 |
+
diagram_img = Image.new('RGB', (800, 100), color='white')
|
916 |
+
draw = ImageDraw.Draw(diagram_img)
|
917 |
+
draw.text((10, 40), f"Error creating visualization: {str(e)}", fill='black')
|
918 |
+
|
919 |
+
return results_text, temp_path, diagram_img
|
920 |
|
921 |
###############################################################################
|
922 |
# 12. DOWNLOAD FUNCTIONS
|