Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -89,41 +89,41 @@ def calculate_shap_values(model, x_tensor):
|
|
89 |
model.eval()
|
90 |
device = next(model.parameters()).device
|
91 |
|
92 |
-
# Create background dataset (baseline)
|
93 |
background = np.zeros((300, x_tensor.shape[1]))
|
94 |
|
95 |
try:
|
96 |
# Try using DeepExplainer (efficient for neural networks)
|
97 |
explainer = shap.DeepExplainer(model, background)
|
98 |
-
|
99 |
-
# Calculate SHAP values
|
100 |
shap_values_all = explainer.shap_values(x_tensor)
|
101 |
-
|
102 |
# Get SHAP values for human class (index 1)
|
103 |
shap_values = shap_values_all[1][0]
|
104 |
-
|
105 |
except Exception as e:
|
106 |
print(f"DeepExplainer failed, falling back to KernelExplainer: {str(e)}")
|
107 |
|
108 |
-
#
|
109 |
def model_predict(x):
|
|
|
|
|
|
|
|
|
|
|
110 |
with torch.no_grad():
|
111 |
-
tensor_x = torch.
|
112 |
output = model(tensor_x)
|
113 |
probs = torch.softmax(output, dim=1)[:, 1] # Human probability
|
114 |
return probs.cpu().numpy()
|
115 |
|
116 |
-
#
|
117 |
-
background = np.zeros((
|
118 |
|
119 |
# Use KernelExplainer as fallback
|
120 |
explainer = shap.KernelExplainer(model_predict, background)
|
121 |
-
|
122 |
-
# Calculate SHAP values
|
123 |
x_numpy = x_tensor.cpu().numpy()
|
124 |
shap_values = explainer.shap_values(x_numpy, nsamples=100)
|
125 |
|
126 |
-
# Get human probability
|
127 |
with torch.no_grad():
|
128 |
output = model(x_tensor)
|
129 |
probs = torch.softmax(output, dim=1)
|
|
|
89 |
model.eval()
|
90 |
device = next(model.parameters()).device
|
91 |
|
92 |
+
# Create a background dataset (baseline) with a sufficient number of samples
|
93 |
background = np.zeros((300, x_tensor.shape[1]))
|
94 |
|
95 |
try:
|
96 |
# Try using DeepExplainer (efficient for neural networks)
|
97 |
explainer = shap.DeepExplainer(model, background)
|
98 |
+
# Calculate SHAP values using DeepExplainer
|
|
|
99 |
shap_values_all = explainer.shap_values(x_tensor)
|
|
|
100 |
# Get SHAP values for human class (index 1)
|
101 |
shap_values = shap_values_all[1][0]
|
|
|
102 |
except Exception as e:
|
103 |
print(f"DeepExplainer failed, falling back to KernelExplainer: {str(e)}")
|
104 |
|
105 |
+
# Define a wrapper function to ensure proper input shape
|
106 |
def model_predict(x):
|
107 |
+
# Ensure x is a numpy array and has at least 2 dimensions
|
108 |
+
if not isinstance(x, np.ndarray):
|
109 |
+
x = np.array(x)
|
110 |
+
if x.ndim == 1:
|
111 |
+
x = np.expand_dims(x, axis=0)
|
112 |
with torch.no_grad():
|
113 |
+
tensor_x = torch.tensor(x, dtype=torch.float, device=device)
|
114 |
output = model(tensor_x)
|
115 |
probs = torch.softmax(output, dim=1)[:, 1] # Human probability
|
116 |
return probs.cpu().numpy()
|
117 |
|
118 |
+
# Re-create a larger background for KernelExplainer if needed
|
119 |
+
background = np.zeros((300, x_tensor.shape[1]))
|
120 |
|
121 |
# Use KernelExplainer as fallback
|
122 |
explainer = shap.KernelExplainer(model_predict, background)
|
|
|
|
|
123 |
x_numpy = x_tensor.cpu().numpy()
|
124 |
shap_values = explainer.shap_values(x_numpy, nsamples=100)
|
125 |
|
126 |
+
# Get human probability from model prediction
|
127 |
with torch.no_grad():
|
128 |
output = model(x_tensor)
|
129 |
probs = torch.softmax(output, dim=1)
|