Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,10 @@ import matplotlib.pyplot as plt
|
|
8 |
import io
|
9 |
from PIL import Image
|
10 |
|
|
|
|
|
|
|
|
|
11 |
class VirusClassifier(nn.Module):
|
12 |
def __init__(self, input_shape: int):
|
13 |
super(VirusClassifier, self).__init__()
|
@@ -28,6 +32,11 @@ class VirusClassifier(nn.Module):
|
|
28 |
def forward(self, x):
|
29 |
return self.network(x)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
def parse_fasta(text):
|
32 |
"""Parse FASTA formatted text into a list of (header, sequence)."""
|
33 |
sequences = []
|
@@ -66,6 +75,11 @@ def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
|
|
66 |
|
67 |
return vec
|
68 |
|
|
|
|
|
|
|
|
|
|
|
69 |
def calculate_shap_values(model, x_tensor):
|
70 |
"""
|
71 |
Calculate SHAP values using a simple ablation approach.
|
@@ -76,22 +90,88 @@ def calculate_shap_values(model, x_tensor):
|
|
76 |
# Get baseline prediction
|
77 |
baseline_output = model(x_tensor)
|
78 |
baseline_probs = torch.softmax(baseline_output, dim=1)
|
79 |
-
baseline_prob = baseline_probs[0, 1].item() # Probability of human class
|
80 |
|
81 |
# Calculate impact of zeroing each feature
|
82 |
shap_values = []
|
83 |
x_zeroed = x_tensor.clone()
|
84 |
for i in range(x_tensor.shape[1]):
|
85 |
-
x_zeroed[0, i]
|
|
|
86 |
output = model(x_zeroed)
|
87 |
probs = torch.softmax(output, dim=1)
|
88 |
prob = probs[0, 1].item()
|
89 |
-
impact = baseline_prob - prob #
|
90 |
shap_values.append(impact)
|
91 |
-
x_zeroed[0, i] =
|
92 |
|
93 |
return np.array(shap_values), baseline_prob
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
def create_importance_bar_plot(shap_values, kmers, top_k=10):
|
96 |
"""Create a bar plot of the most important k-mers."""
|
97 |
plt.rcParams.update({'font.size': 10})
|
@@ -108,7 +188,7 @@ def create_importance_bar_plot(shap_values, kmers, top_k=10):
|
|
108 |
plt.yticks(range(len(values)), features)
|
109 |
plt.xlabel('SHAP value (impact on model output)')
|
110 |
plt.title(f'Top {top_k} Most Influential k-mers')
|
111 |
-
plt.gca().invert_yaxis() #
|
112 |
|
113 |
return plt.gcf()
|
114 |
|
@@ -147,16 +227,14 @@ def visualize_sequence_impacts(sequence, kmers, shap_values, base_prob):
|
|
147 |
# Plot k-mers with controlled spacing
|
148 |
y_spacing = 0.9 / max(len(display_kmers), 1)
|
149 |
y_position = 0.95
|
150 |
-
max_seq_display = 100 # Maximum sequence length to show
|
151 |
|
152 |
for pos, kmer, impact in display_kmers:
|
153 |
-
# Truncate sequence display if too long
|
154 |
pre_sequence = sequence[max(0, pos-20):pos]
|
155 |
-
post_sequence = sequence[pos+
|
156 |
|
157 |
# Add ellipsis if truncated
|
158 |
pre_ellipsis = "..." if pos > 20 else ""
|
159 |
-
post_ellipsis = "..." if pos+
|
160 |
|
161 |
# Choose color based on impact
|
162 |
color = '#ffcccb' if impact > 0 else '#cce0ff'
|
@@ -165,9 +243,9 @@ def visualize_sequence_impacts(sequence, kmers, shap_values, base_prob):
|
|
165 |
# Draw text elements
|
166 |
plt.text(0.01, y_position, f"{pre_ellipsis}{pre_sequence}", fontsize=9)
|
167 |
plt.text(0.01 + len(f"{pre_ellipsis}{pre_sequence}")/50, y_position,
|
168 |
-
|
169 |
plt.text(0.01 + (len(f"{pre_ellipsis}{pre_sequence}") + len(kmer))/50,
|
170 |
-
|
171 |
|
172 |
# Add impact value
|
173 |
plt.text(0.8, y_position, f"{arrow} {impact:+.3f}", fontsize=9)
|
@@ -176,10 +254,29 @@ def visualize_sequence_impacts(sequence, kmers, shap_values, base_prob):
|
|
176 |
|
177 |
plt.axis('off')
|
178 |
|
179 |
-
# Adjust layout
|
180 |
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
181 |
return fig
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
def predict(file_obj, top_kmers=10, fasta_text=""):
|
184 |
"""Main prediction function for Gradio interface."""
|
185 |
# Handle input
|
@@ -190,25 +287,26 @@ def predict(file_obj, top_kmers=10, fasta_text=""):
|
|
190 |
with open(file_obj, 'r') as f:
|
191 |
text = f.read()
|
192 |
except Exception as e:
|
193 |
-
return f"Error reading file: {str(e)}", None, None
|
194 |
else:
|
195 |
-
return "Please provide a FASTA sequence.", None, None
|
196 |
|
197 |
# Parse FASTA
|
198 |
sequences = parse_fasta(text)
|
199 |
if not sequences:
|
200 |
-
return "No valid FASTA sequences found.", None, None
|
201 |
|
202 |
header, seq = sequences[0]
|
203 |
|
204 |
-
# Load model and
|
205 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
206 |
try:
|
207 |
model = VirusClassifier(256).to(device)
|
208 |
-
|
|
|
209 |
scaler = joblib.load('scaler.pkl')
|
210 |
except Exception as e:
|
211 |
-
return f"Error loading model: {str(e)}", None, None
|
212 |
|
213 |
# Generate features
|
214 |
freq_vector = sequence_to_kmer_vector(seq)
|
@@ -218,34 +316,38 @@ def predict(file_obj, top_kmers=10, fasta_text=""):
|
|
218 |
# Calculate SHAP values and get prediction
|
219 |
shap_values, prob_human = calculate_shap_values(model, x_tensor)
|
220 |
|
221 |
-
#
|
222 |
results = [
|
223 |
f"Sequence: {header}",
|
224 |
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
|
225 |
-
f"Confidence: {max(prob_human, 1-prob_human):.3f}",
|
226 |
f"Human Probability: {prob_human:.3f}",
|
227 |
"\nTop Contributing k-mers:"
|
228 |
]
|
229 |
-
|
230 |
-
#
|
231 |
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
|
232 |
|
233 |
-
#
|
234 |
importance_plot = create_importance_bar_plot(shap_values, kmers, top_kmers)
|
|
|
|
|
|
|
235 |
sequence_plot = visualize_sequence_impacts(seq, kmers, shap_values, prob_human)
|
|
|
236 |
|
237 |
-
#
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
return img
|
245 |
|
246 |
-
|
|
|
|
|
247 |
|
248 |
-
# Create Gradio interface
|
249 |
css = """
|
250 |
.gradio-container {
|
251 |
font-family: 'IBM Plex Sans', sans-serif;
|
@@ -283,11 +385,12 @@ with gr.Blocks(css=css) as iface:
|
|
283 |
results = gr.Textbox(label="Analysis Results", lines=10)
|
284 |
kmer_plot = gr.Image(label="K-mer Importance Plot")
|
285 |
shap_plot = gr.Image(label="Sequence Impact Visualization (SHAP-style)")
|
|
|
286 |
|
287 |
submit_btn.click(
|
288 |
predict,
|
289 |
inputs=[file_input, top_k, text_input],
|
290 |
-
outputs=[results, kmer_plot, shap_plot]
|
291 |
)
|
292 |
|
293 |
gr.Markdown("""
|
@@ -298,7 +401,10 @@ with gr.Blocks(css=css) as iface:
|
|
298 |
- Blue highlights = pushing toward non-human origin
|
299 |
- Arrows (↑/↓) show impact direction
|
300 |
- Values show impact magnitude
|
|
|
|
|
|
|
301 |
""")
|
302 |
|
303 |
if __name__ == "__main__":
|
304 |
-
iface.launch()
|
|
|
8 |
import io
|
9 |
from PIL import Image
|
10 |
|
11 |
+
###############################################################################
|
12 |
+
# 1. MODEL DEFINITION
|
13 |
+
###############################################################################
|
14 |
+
|
15 |
class VirusClassifier(nn.Module):
|
16 |
def __init__(self, input_shape: int):
|
17 |
super(VirusClassifier, self).__init__()
|
|
|
32 |
def forward(self, x):
|
33 |
return self.network(x)
|
34 |
|
35 |
+
|
36 |
+
###############################################################################
|
37 |
+
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
|
38 |
+
###############################################################################
|
39 |
+
|
40 |
def parse_fasta(text):
|
41 |
"""Parse FASTA formatted text into a list of (header, sequence)."""
|
42 |
sequences = []
|
|
|
75 |
|
76 |
return vec
|
77 |
|
78 |
+
|
79 |
+
###############################################################################
|
80 |
+
# 3. SHAP-VALUE (ABLATION) CALCULATION
|
81 |
+
###############################################################################
|
82 |
+
|
83 |
def calculate_shap_values(model, x_tensor):
|
84 |
"""
|
85 |
Calculate SHAP values using a simple ablation approach.
|
|
|
90 |
# Get baseline prediction
|
91 |
baseline_output = model(x_tensor)
|
92 |
baseline_probs = torch.softmax(baseline_output, dim=1)
|
93 |
+
baseline_prob = baseline_probs[0, 1].item() # Probability of 'human' class
|
94 |
|
95 |
# Calculate impact of zeroing each feature
|
96 |
shap_values = []
|
97 |
x_zeroed = x_tensor.clone()
|
98 |
for i in range(x_tensor.shape[1]):
|
99 |
+
orig_value = x_zeroed[0, i].item()
|
100 |
+
x_zeroed[0, i] = 0.0
|
101 |
output = model(x_zeroed)
|
102 |
probs = torch.softmax(output, dim=1)
|
103 |
prob = probs[0, 1].item()
|
104 |
+
impact = baseline_prob - prob # how much removing the feature changed the prediction
|
105 |
shap_values.append(impact)
|
106 |
+
x_zeroed[0, i] = orig_value # restore the original value
|
107 |
|
108 |
return np.array(shap_values), baseline_prob
|
109 |
|
110 |
+
|
111 |
+
###############################################################################
|
112 |
+
# 4. PER-BASE SHAP AGGREGATION (LINEAR HEATMAP)
|
113 |
+
###############################################################################
|
114 |
+
|
115 |
+
def compute_positionwise_scores(sequence, shap_values, k=4):
|
116 |
+
"""
|
117 |
+
Returns an array of per-base SHAP contributions by averaging
|
118 |
+
the k-mer SHAP values of all k-mers covering that base.
|
119 |
+
"""
|
120 |
+
# Create the list of k-mers (in lexicographic order)
|
121 |
+
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
|
122 |
+
kmer_dict = {km: i for i, km in enumerate(kmers)}
|
123 |
+
|
124 |
+
seq_len = len(sequence)
|
125 |
+
|
126 |
+
# Arrays to accumulate sums (SHAP) and coverage counts
|
127 |
+
shap_sums = np.zeros(seq_len, dtype=np.float32)
|
128 |
+
coverage = np.zeros(seq_len, dtype=np.float32)
|
129 |
+
|
130 |
+
# Slide over the sequence, summing SHAP values for overlapping positions
|
131 |
+
for i in range(seq_len - k + 1):
|
132 |
+
kmer = sequence[i:i+k]
|
133 |
+
if kmer in kmer_dict:
|
134 |
+
# Get the SHAP value for this k-mer
|
135 |
+
value = shap_values[kmer_dict[kmer]]
|
136 |
+
# Accumulate it for each base in the k-mer
|
137 |
+
shap_sums[i : i + k] += value
|
138 |
+
coverage[i : i + k] += 1
|
139 |
+
|
140 |
+
# Compute the average SHAP per base (avoid divide-by-zero)
|
141 |
+
with np.errstate(divide='ignore', invalid='ignore'):
|
142 |
+
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
|
143 |
+
|
144 |
+
return shap_means
|
145 |
+
|
146 |
+
def plot_linear_heatmap(shap_means):
|
147 |
+
"""
|
148 |
+
Plots a 1D heatmap of per-base SHAP contributions.
|
149 |
+
Negative = push toward Non-Human, Positive = push toward Human.
|
150 |
+
"""
|
151 |
+
# Reshape into (1, -1) so that imshow displays it as a single row
|
152 |
+
heatmap_data = shap_means.reshape(1, -1)
|
153 |
+
|
154 |
+
fig, ax = plt.subplots(figsize=(12, 2))
|
155 |
+
|
156 |
+
# We'll use a diverging color map (red/blue)
|
157 |
+
cax = ax.imshow(heatmap_data, aspect='auto', cmap='RdBu_r')
|
158 |
+
|
159 |
+
# Add colorbar
|
160 |
+
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.2)
|
161 |
+
cbar.set_label('SHAP Contribution')
|
162 |
+
|
163 |
+
ax.set_yticks([]) # single row, so hide the y-axis
|
164 |
+
ax.set_xlabel('Position in Sequence')
|
165 |
+
ax.set_title('Per-base SHAP Heatmap')
|
166 |
+
|
167 |
+
plt.tight_layout()
|
168 |
+
return fig
|
169 |
+
|
170 |
+
|
171 |
+
###############################################################################
|
172 |
+
# 5. OTHER PLOTS: BAR PLOT OF TOP-K AND SEQUENCE IMPACT VISUALIZATION
|
173 |
+
###############################################################################
|
174 |
+
|
175 |
def create_importance_bar_plot(shap_values, kmers, top_k=10):
|
176 |
"""Create a bar plot of the most important k-mers."""
|
177 |
plt.rcParams.update({'font.size': 10})
|
|
|
188 |
plt.yticks(range(len(values)), features)
|
189 |
plt.xlabel('SHAP value (impact on model output)')
|
190 |
plt.title(f'Top {top_k} Most Influential k-mers')
|
191 |
+
plt.gca().invert_yaxis() # most important at top
|
192 |
|
193 |
return plt.gcf()
|
194 |
|
|
|
227 |
# Plot k-mers with controlled spacing
|
228 |
y_spacing = 0.9 / max(len(display_kmers), 1)
|
229 |
y_position = 0.95
|
|
|
230 |
|
231 |
for pos, kmer, impact in display_kmers:
|
|
|
232 |
pre_sequence = sequence[max(0, pos-20):pos]
|
233 |
+
post_sequence = sequence[pos+len(kmer):min(pos+len(kmer)+20, len(sequence))]
|
234 |
|
235 |
# Add ellipsis if truncated
|
236 |
pre_ellipsis = "..." if pos > 20 else ""
|
237 |
+
post_ellipsis = "..." if pos+len(kmer)+20 < len(sequence) else ""
|
238 |
|
239 |
# Choose color based on impact
|
240 |
color = '#ffcccb' if impact > 0 else '#cce0ff'
|
|
|
243 |
# Draw text elements
|
244 |
plt.text(0.01, y_position, f"{pre_ellipsis}{pre_sequence}", fontsize=9)
|
245 |
plt.text(0.01 + len(f"{pre_ellipsis}{pre_sequence}")/50, y_position,
|
246 |
+
kmer, fontsize=9, bbox=dict(facecolor=color, alpha=0.3, pad=1))
|
247 |
plt.text(0.01 + (len(f"{pre_ellipsis}{pre_sequence}") + len(kmer))/50,
|
248 |
+
y_position, f"{post_sequence}{post_ellipsis}", fontsize=9)
|
249 |
|
250 |
# Add impact value
|
251 |
plt.text(0.8, y_position, f"{arrow} {impact:+.3f}", fontsize=9)
|
|
|
254 |
|
255 |
plt.axis('off')
|
256 |
|
257 |
+
# Adjust layout
|
258 |
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
259 |
return fig
|
260 |
|
261 |
+
|
262 |
+
###############################################################################
|
263 |
+
# 6. HELPER FUNCTION: FIG TO IMAGE
|
264 |
+
###############################################################################
|
265 |
+
|
266 |
+
def fig_to_image(fig):
|
267 |
+
"""Convert a Matplotlib figure to a PIL Image."""
|
268 |
+
buf = io.BytesIO()
|
269 |
+
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
|
270 |
+
buf.seek(0)
|
271 |
+
img = Image.open(buf)
|
272 |
+
plt.close(fig)
|
273 |
+
return img
|
274 |
+
|
275 |
+
|
276 |
+
###############################################################################
|
277 |
+
# 7. MAIN PREDICTION FUNCTION
|
278 |
+
###############################################################################
|
279 |
+
|
280 |
def predict(file_obj, top_kmers=10, fasta_text=""):
|
281 |
"""Main prediction function for Gradio interface."""
|
282 |
# Handle input
|
|
|
287 |
with open(file_obj, 'r') as f:
|
288 |
text = f.read()
|
289 |
except Exception as e:
|
290 |
+
return f"Error reading file: {str(e)}", None, None, None
|
291 |
else:
|
292 |
+
return "Please provide a FASTA sequence.", None, None, None
|
293 |
|
294 |
# Parse FASTA
|
295 |
sequences = parse_fasta(text)
|
296 |
if not sequences:
|
297 |
+
return "No valid FASTA sequences found.", None, None, None
|
298 |
|
299 |
header, seq = sequences[0]
|
300 |
|
301 |
+
# Load model and scaler
|
302 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
303 |
try:
|
304 |
model = VirusClassifier(256).to(device)
|
305 |
+
# Remove 'weights_only=True' if it causes errors; it's not a standard argument.
|
306 |
+
model.load_state_dict(torch.load('model.pt', map_location=device))
|
307 |
scaler = joblib.load('scaler.pkl')
|
308 |
except Exception as e:
|
309 |
+
return f"Error loading model: {str(e)}", None, None, None
|
310 |
|
311 |
# Generate features
|
312 |
freq_vector = sequence_to_kmer_vector(seq)
|
|
|
316 |
# Calculate SHAP values and get prediction
|
317 |
shap_values, prob_human = calculate_shap_values(model, x_tensor)
|
318 |
|
319 |
+
# Prediction text
|
320 |
results = [
|
321 |
f"Sequence: {header}",
|
322 |
f"Prediction: {'Human' if prob_human > 0.5 else 'Non-human'} Origin",
|
323 |
+
f"Confidence: {max(prob_human, 1 - prob_human):.3f}",
|
324 |
f"Human Probability: {prob_human:.3f}",
|
325 |
"\nTop Contributing k-mers:"
|
326 |
]
|
327 |
+
|
328 |
+
# Create k-mer lists for visualization
|
329 |
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
|
330 |
|
331 |
+
# 1) K-mer importance bar plot
|
332 |
importance_plot = create_importance_bar_plot(shap_values, kmers, top_kmers)
|
333 |
+
importance_img = fig_to_image(importance_plot)
|
334 |
+
|
335 |
+
# 2) SHAP-style textual sequence impact
|
336 |
sequence_plot = visualize_sequence_impacts(seq, kmers, shap_values, prob_human)
|
337 |
+
sequence_img = fig_to_image(sequence_plot)
|
338 |
|
339 |
+
# 3) Linear heatmap across full genome
|
340 |
+
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
|
341 |
+
heatmap_fig = plot_linear_heatmap(shap_means)
|
342 |
+
heatmap_img = fig_to_image(heatmap_fig)
|
343 |
+
|
344 |
+
return "\n".join(results), importance_img, sequence_img, heatmap_img
|
345 |
+
|
|
|
346 |
|
347 |
+
###############################################################################
|
348 |
+
# 8. BUILD GRADIO INTERFACE
|
349 |
+
###############################################################################
|
350 |
|
|
|
351 |
css = """
|
352 |
.gradio-container {
|
353 |
font-family: 'IBM Plex Sans', sans-serif;
|
|
|
385 |
results = gr.Textbox(label="Analysis Results", lines=10)
|
386 |
kmer_plot = gr.Image(label="K-mer Importance Plot")
|
387 |
shap_plot = gr.Image(label="Sequence Impact Visualization (SHAP-style)")
|
388 |
+
heatmap_plot = gr.Image(label="Genome Heatmap")
|
389 |
|
390 |
submit_btn.click(
|
391 |
predict,
|
392 |
inputs=[file_input, top_k, text_input],
|
393 |
+
outputs=[results, kmer_plot, shap_plot, heatmap_plot]
|
394 |
)
|
395 |
|
396 |
gr.Markdown("""
|
|
|
401 |
- Blue highlights = pushing toward non-human origin
|
402 |
- Arrows (↑/↓) show impact direction
|
403 |
- Values show impact magnitude
|
404 |
+
- **Genome Heatmap**: Per-base SHAP values across the entire sequence
|
405 |
+
- Red = push toward human
|
406 |
+
- Blue = push toward non-human
|
407 |
""")
|
408 |
|
409 |
if __name__ == "__main__":
|
410 |
+
iface.launch()
|