hiyata commited on
Commit
a2f7e81
·
verified ·
1 Parent(s): f6763a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -34
app.py CHANGED
@@ -84,53 +84,97 @@ def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
84
  ###############################################################################
85
 
86
  import shap
 
87
 
88
  def calculate_shap_values(model, x_tensor):
 
 
 
 
 
 
89
  model.eval()
90
  device = next(model.parameters()).device
91
 
92
- # Create background dataset (baseline)
93
- background = torch.zeros((10, x_tensor.shape[1]), device=device)
 
 
 
94
 
 
95
  try:
96
- # Try using DeepExplainer (efficient for neural networks)
97
- explainer = shap.DeepExplainer(model, background)
98
-
99
- # Calculate SHAP values
 
 
 
100
  shap_values_all = explainer.shap_values(x_tensor)
101
 
102
- # Get SHAP values for human class (index 1)
103
- shap_values = shap_values_all[1][0]
 
 
 
 
 
 
 
104
 
105
  except Exception as e:
106
- print(f"DeepExplainer failed, falling back to KernelExplainer: {str(e)}")
107
 
108
- # Create model wrapper function
109
- def model_predict(x):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  with torch.no_grad():
111
- tensor_x = torch.FloatTensor(x).to(device)
112
- output = model(tensor_x)
113
- probs = torch.softmax(output, dim=1)[:, 1] # Human probability
114
- return probs.cpu().numpy()
115
-
116
- # Create baseline distribution
117
- background = np.zeros((1, x_tensor.shape[1]))
118
-
119
- # Use KernelExplainer as fallback
120
- explainer = shap.KernelExplainer(model_predict, background)
121
-
122
- # Calculate SHAP values
123
- x_numpy = x_tensor.cpu().numpy()
124
- shap_values = explainer.shap_values(x_numpy, nsamples=100)
125
-
126
- # Get human probability
127
- with torch.no_grad():
128
- output = model(x_tensor)
129
- probs = torch.softmax(output, dim=1)
130
- prob_human = probs[0, 1].item()
131
-
132
- return np.array(shap_values), prob_human
133
-
134
  ###############################################################################
135
  # 4. PER-BASE SHAP AGGREGATION
136
  ###############################################################################
 
84
  ###############################################################################
85
 
86
  import shap
87
+ from sklearn.linear_model import Ridge
88
 
89
  def calculate_shap_values(model, x_tensor):
90
+ """
91
+ Calculate SHAP values with three possible methods:
92
+ 1. Try SHAP's GradientExplainer (better for deep models with unsupported layers)
93
+ 2. Fall back to SHAP's KernelExplainer with fixed parameters if #1 fails
94
+ 3. Fall back to original feature ablation method if both SHAP methods fail
95
+ """
96
  model.eval()
97
  device = next(model.parameters()).device
98
 
99
+ # Get human probability for baseline
100
+ with torch.no_grad():
101
+ output = model(x_tensor)
102
+ probs = torch.softmax(output, dim=1)
103
+ prob_human = probs[0, 1].item()
104
 
105
+ # Try GradientExplainer first (better for neural nets with unsupported ops)
106
  try:
107
+ # Create synthetic background data (more samples to avoid errors)
108
+ background = torch.zeros((20, x_tensor.shape[1]), device=device)
109
+ for i in range(20):
110
+ # Add small random noise to avoid singular matrices
111
+ background[i] = torch.randn_like(x_tensor[0]) * 0.01
112
+
113
+ explainer = shap.GradientExplainer(model, background)
114
  shap_values_all = explainer.shap_values(x_tensor)
115
 
116
+ # For classification, shap_values is a list of arrays, one for each class
117
+ # We want the values for the "human" class (index 1)
118
+ if isinstance(shap_values_all, list) and len(shap_values_all) > 1:
119
+ shap_values = shap_values_all[1][0].cpu().numpy()
120
+ else:
121
+ shap_values = shap_values_all[0].cpu().numpy()
122
+
123
+ print("Using GradientExplainer for SHAP values")
124
+ return np.array(shap_values), prob_human
125
 
126
  except Exception as e:
127
+ print(f"GradientExplainer failed: {str(e)}, trying KernelExplainer")
128
 
129
+ try:
130
+ # Create model wrapper function
131
+ def model_predict(x):
132
+ with torch.no_grad():
133
+ tensor_x = torch.FloatTensor(x).to(device)
134
+ output = model(tensor_x)
135
+ probs = torch.softmax(output, dim=1)[:, 1] # Human probability
136
+ return probs.cpu().numpy()
137
+
138
+ # Create more background samples (50 samples with random noise)
139
+ background = np.zeros((50, x_tensor.shape[1]))
140
+ for i in range(50):
141
+ # Small random values to create better background distribution
142
+ background[i] = np.random.normal(0, 0.01, x_tensor.shape[1])
143
+
144
+ # Force using Ridge regression instead of default LassoLarsIC
145
+ explainer = shap.KernelExplainer(
146
+ model_predict,
147
+ background,
148
+ link="identity", # Use raw output, not logit
149
+ l1_reg="num_features(10)", # Simplified regularization
150
+ model_regressor=Ridge(alpha=0.01) # Use Ridge instead of LassoLarsIC
151
+ )
152
+
153
+ # Calculate SHAP values with more samples
154
+ x_numpy = x_tensor.cpu().numpy()
155
+ shap_values = explainer.shap_values(x_numpy, nsamples=300)
156
+
157
+ print("Using KernelExplainer for SHAP values")
158
+ return np.array(shap_values), prob_human
159
+
160
+ except Exception as e:
161
+ print(f"KernelExplainer failed: {str(e)}, falling back to ablation method")
162
+
163
+ # Fall back to original feature ablation method
164
  with torch.no_grad():
165
+ shap_values = []
166
+ x_zeroed = x_tensor.clone()
167
+ for i in range(x_tensor.shape[1]):
168
+ original_val = x_zeroed[0, i].item()
169
+ x_zeroed[0, i] = 0.0
170
+ output = model(x_zeroed)
171
+ probs = torch.softmax(output, dim=1)
172
+ prob = probs[0, 1].item()
173
+ shap_values.append(prob_human - prob)
174
+ x_zeroed[0, i] = original_val
175
+
176
+ print("Using ablation method for SHAP values")
177
+ return np.array(shap_values), prob_human
 
 
 
 
 
 
 
 
 
 
178
  ###############################################################################
179
  # 4. PER-BASE SHAP AGGREGATION
180
  ###############################################################################