Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,13 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import joblib
|
4 |
import numpy as np
|
5 |
-
from itertools import product
|
6 |
import torch.nn as nn
|
7 |
import matplotlib.pyplot as plt
|
8 |
import io
|
9 |
from PIL import Image
|
|
|
|
|
|
|
10 |
|
11 |
class VirusClassifier(nn.Module):
|
12 |
def __init__(self, input_shape: int):
|
@@ -28,39 +30,40 @@ class VirusClassifier(nn.Module):
|
|
28 |
def forward(self, x):
|
29 |
return self.network(x)
|
30 |
|
31 |
-
def
|
32 |
-
"""
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
output = self.network(x)
|
35 |
probs = torch.softmax(output, dim=1)
|
36 |
|
37 |
-
#
|
38 |
-
|
|
|
|
|
39 |
if x.grad is not None:
|
40 |
x.grad.zero_()
|
41 |
-
human_prob.backward()
|
42 |
-
importance = x.grad
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
if kmer in kmer_dict:
|
55 |
-
vec[kmer_dict[kmer]] += 1
|
56 |
-
|
57 |
-
total_kmers = len(sequence) - k + 1
|
58 |
-
if total_kmers > 0:
|
59 |
-
vec = vec / total_kmers
|
60 |
|
61 |
-
|
62 |
|
63 |
-
def parse_fasta(text):
|
|
|
|
|
|
|
64 |
sequences = []
|
65 |
current_header = None
|
66 |
current_sequence = []
|
@@ -80,15 +83,109 @@ def parse_fasta(text):
|
|
80 |
sequences.append((current_header, ''.join(current_sequence)))
|
81 |
return sequences
|
82 |
|
83 |
-
def
|
84 |
-
"""
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
# Create
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
#
|
91 |
-
ax1 = plt.subplot(gs[0])
|
92 |
current_prob = 0.5
|
93 |
steps = [('Start', current_prob, 0)]
|
94 |
|
@@ -96,188 +193,296 @@ def create_visualization(important_kmers, human_prob, title):
|
|
96 |
change = kmer['impact'] * (-1 if kmer['direction'] == 'non-human' else 1)
|
97 |
current_prob += change
|
98 |
steps.append((kmer['kmer'], current_prob, change))
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
y =
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
# Add reference line
|
108 |
-
ax1.axhline(y=0.5, color='r', linestyle='--', label='Neutral (0.5)')
|
109 |
-
|
110 |
-
# Customize plot
|
111 |
-
ax1.grid(True, linestyle='--', alpha=0.7)
|
112 |
-
ax1.set_ylim(0, 1)
|
113 |
-
ax1.set_ylabel('Human Probability')
|
114 |
-
ax1.set_title(f'K-mer Contributions to Prediction (final prob: {human_prob:.3f})')
|
115 |
-
|
116 |
-
# Add labels for each point
|
117 |
for i, (kmer, prob, change) in enumerate(steps):
|
118 |
-
|
119 |
-
ax1.annotate(kmer,
|
120 |
(i, prob),
|
121 |
xytext=(0, 10 if i % 2 == 0 else -20),
|
122 |
textcoords='offset points',
|
123 |
ha='center',
|
124 |
rotation=45)
|
125 |
|
126 |
-
# Add change value
|
127 |
if i > 0:
|
128 |
change_text = f'{change:+.3f}'
|
129 |
color = 'green' if change > 0 else 'red'
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
# Prepare data
|
143 |
kmers = [k['kmer'] for k in important_kmers]
|
144 |
frequencies = [k['occurrence'] for k in important_kmers]
|
145 |
sigmas = [k['sigma'] for k in important_kmers]
|
146 |
-
colors = ['
|
147 |
|
148 |
-
# Create bar plot for frequencies
|
149 |
x = np.arange(len(kmers))
|
150 |
width = 0.35
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
ax2_twin.bar(x + width/2, sigmas, width, label='σ from mean', color=[c if s > 0 else 'gray' for c, s in zip(colors, sigmas)], alpha=0.3)
|
155 |
|
156 |
-
#
|
157 |
-
ax2.
|
158 |
-
|
159 |
-
ax2.
|
160 |
-
|
161 |
-
ax2.set_title('K-mer Frequencies and Statistical Significance')
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
ax2.
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
plt.tight_layout()
|
169 |
return fig
|
170 |
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
if file_obj is None:
|
173 |
-
return "Please upload a FASTA file",
|
174 |
|
175 |
try:
|
176 |
if isinstance(file_obj, str):
|
177 |
text = file_obj
|
178 |
else:
|
179 |
-
text = file_obj.decode('utf-8')
|
180 |
except Exception as e:
|
181 |
-
return f"Error reading file: {str(e)}",
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
186 |
|
|
|
187 |
try:
|
188 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
189 |
-
model = VirusClassifier(
|
190 |
state_dict = torch.load('model.pt', map_location=device)
|
191 |
model.load_state_dict(state_dict)
|
192 |
-
scaler = joblib.load('scaler.pkl')
|
193 |
model.eval()
|
|
|
|
|
194 |
except Exception as e:
|
195 |
-
return f"Error loading model: {str(e)}",
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
|
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
header, seq = sequences[0]
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
207 |
|
208 |
-
#
|
209 |
with torch.no_grad():
|
210 |
output = model(X_tensor)
|
211 |
probs = torch.softmax(output, dim=1)
|
212 |
|
213 |
-
#
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
216 |
|
217 |
-
#
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
228 |
|
229 |
-
|
230 |
-
'kmer':
|
231 |
-
'impact':
|
232 |
'direction': direction,
|
233 |
-
'occurrence':
|
234 |
'sigma': sigma
|
235 |
})
|
236 |
|
237 |
-
#
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
Human
|
246 |
-
Non-human
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
-
|
250 |
-
results_text += f"\n {kmer['kmer']}: "
|
251 |
-
results_text += f"pushes toward {kmer['direction']} (impact={kmer['impact']:.4f}), "
|
252 |
-
results_text += f"occurrence={kmer['occurrence']:.2f}% of sequence "
|
253 |
-
results_text += f"(appears {abs(kmer['sigma']):.2f}σ "
|
254 |
-
results_text += "more" if kmer['sigma'] > 0 else "less"
|
255 |
-
results_text += " than average)"
|
256 |
|
257 |
-
#
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
#
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
if __name__ == "__main__":
|
283 |
-
|
|
|
|
2 |
import torch
|
3 |
import joblib
|
4 |
import numpy as np
|
|
|
5 |
import torch.nn as nn
|
6 |
import matplotlib.pyplot as plt
|
7 |
import io
|
8 |
from PIL import Image
|
9 |
+
from itertools import product
|
10 |
+
|
11 |
+
# --------------- Model Definition ---------------
|
12 |
|
13 |
class VirusClassifier(nn.Module):
|
14 |
def __init__(self, input_shape: int):
|
|
|
30 |
def forward(self, x):
|
31 |
return self.network(x)
|
32 |
|
33 |
+
def get_gradient_importance(self, x, class_index=1):
|
34 |
+
"""
|
35 |
+
Calculate gradient-based importance for each input feature.
|
36 |
+
By default, we compute the gradient wrt the 'human' class (index=1).
|
37 |
+
This method is akin to a raw gradient or 'saliency' approach.
|
38 |
+
"""
|
39 |
+
x = x.clone().detach().requires_grad_(True)
|
40 |
output = self.network(x)
|
41 |
probs = torch.softmax(output, dim=1)
|
42 |
|
43 |
+
# Probability of the specified class
|
44 |
+
target_prob = probs[..., class_index]
|
45 |
+
|
46 |
+
# Zero existing gradients if any
|
47 |
if x.grad is not None:
|
48 |
x.grad.zero_()
|
|
|
|
|
49 |
|
50 |
+
# Backprop on that probability
|
51 |
+
target_prob.backward()
|
52 |
+
|
53 |
+
# Raw gradient is now in x.grad
|
54 |
+
importance = x.grad.detach()
|
55 |
+
|
56 |
+
# Optional: Multiply by input to get a more "integrated gradients"-like measure
|
57 |
+
# importance = importance * x.detach()
|
58 |
+
|
59 |
+
return importance, float(target_prob)
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
# --------------- Utility Functions ---------------
|
62 |
|
63 |
+
def parse_fasta(text: str):
|
64 |
+
"""
|
65 |
+
Parse a FASTA string and return a list of (header, sequence) pairs.
|
66 |
+
"""
|
67 |
sequences = []
|
68 |
current_header = None
|
69 |
current_sequence = []
|
|
|
83 |
sequences.append((current_header, ''.join(current_sequence)))
|
84 |
return sequences
|
85 |
|
86 |
+
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
|
87 |
+
"""
|
88 |
+
Convert a nucleotide sequence into a k-mer frequency vector.
|
89 |
+
Defaults to k=4.
|
90 |
+
"""
|
91 |
+
# Generate all possible k-mers
|
92 |
+
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
|
93 |
+
kmer_dict = {km: i for i, km in enumerate(kmers)}
|
94 |
+
vec = np.zeros(len(kmers), dtype=np.float32)
|
95 |
+
|
96 |
+
for i in range(len(sequence) - k + 1):
|
97 |
+
kmer = sequence[i:i+k]
|
98 |
+
if kmer in kmer_dict:
|
99 |
+
vec[kmer_dict[kmer]] += 1
|
100 |
+
|
101 |
+
total_kmers = len(sequence) - k + 1
|
102 |
+
if total_kmers > 0:
|
103 |
+
vec = vec / total_kmers
|
104 |
+
|
105 |
+
return vec
|
106 |
+
|
107 |
+
def compute_sequence_stats(sequence: str):
|
108 |
+
"""
|
109 |
+
Compute various statistics for a given sequence:
|
110 |
+
- Length
|
111 |
+
- GC content (%)
|
112 |
+
- A/C/G/T counts
|
113 |
+
"""
|
114 |
+
length = len(sequence)
|
115 |
+
if length == 0:
|
116 |
+
return {
|
117 |
+
'length': 0,
|
118 |
+
'gc_content': 0,
|
119 |
+
'counts': {'A': 0, 'C': 0, 'G': 0, 'T': 0}
|
120 |
+
}
|
121 |
+
|
122 |
+
counts = {
|
123 |
+
'A': sequence.count('A'),
|
124 |
+
'C': sequence.count('C'),
|
125 |
+
'G': sequence.count('G'),
|
126 |
+
'T': sequence.count('T')
|
127 |
+
}
|
128 |
+
gc_content = (counts['G'] + counts['C']) / length * 100.0
|
129 |
+
|
130 |
+
return {
|
131 |
+
'length': length,
|
132 |
+
'gc_content': gc_content,
|
133 |
+
'counts': counts
|
134 |
+
}
|
135 |
+
|
136 |
+
# --------------- Visualization Functions ---------------
|
137 |
+
|
138 |
+
def plot_shap_like_bars(kmers, importance_values, top_k=10):
|
139 |
+
"""
|
140 |
+
Create a bar chart that mimics a SHAP summary plot:
|
141 |
+
- k-mers on y-axis
|
142 |
+
- importance magnitude on x-axis
|
143 |
+
- color indicating positive (push towards human) vs negative (push towards non-human)
|
144 |
+
"""
|
145 |
+
abs_importance = np.abs(importance_values)
|
146 |
+
# Sort by absolute importance
|
147 |
+
sorted_indices = np.argsort(abs_importance)[::-1]
|
148 |
+
top_indices = sorted_indices[:top_k]
|
149 |
+
|
150 |
+
# Prepare data
|
151 |
+
top_kmers = [kmers[i] for i in top_indices]
|
152 |
+
top_importances = importance_values[top_indices]
|
153 |
|
154 |
+
# Create plot
|
155 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
156 |
+
colors = ['green' if val > 0 else 'red' for val in top_importances]
|
157 |
+
ax.barh(range(len(top_kmers)), np.abs(top_importances), color=colors)
|
158 |
+
ax.set_yticks(range(len(top_kmers)))
|
159 |
+
ax.set_yticklabels(top_kmers)
|
160 |
+
ax.invert_yaxis() # So that the highest value is at the top
|
161 |
+
ax.set_xlabel("Feature Importance (Gradient Magnitude)")
|
162 |
+
ax.set_title(f"Top-{top_k} SHAP-like Feature Importances")
|
163 |
+
plt.tight_layout()
|
164 |
+
return fig
|
165 |
+
|
166 |
+
def plot_kmer_distribution(kmer_freq_vector, kmers):
|
167 |
+
"""
|
168 |
+
Plot a histogram of k-mer frequencies for the entire vector.
|
169 |
+
(Optional if you want a quick distribution overview)
|
170 |
+
"""
|
171 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
172 |
+
ax.bar(range(len(kmer_freq_vector)), kmer_freq_vector, color='blue', alpha=0.6)
|
173 |
+
ax.set_xlabel("K-mer Index")
|
174 |
+
ax.set_ylabel("Frequency")
|
175 |
+
ax.set_title("K-mer Frequency Distribution")
|
176 |
+
ax.set_xticks([])
|
177 |
+
plt.tight_layout()
|
178 |
+
return fig
|
179 |
+
|
180 |
+
def create_step_visualization(important_kmers, human_prob):
|
181 |
+
"""
|
182 |
+
Re-implementation of your step-wise probability plot.
|
183 |
+
Shows how each top k-mer 'pushes' the probability from 0.5 to the final value.
|
184 |
+
"""
|
185 |
+
fig = plt.figure(figsize=(8, 5))
|
186 |
+
ax = fig.add_subplot(111)
|
187 |
|
188 |
+
# Start from 0.5
|
|
|
189 |
current_prob = 0.5
|
190 |
steps = [('Start', current_prob, 0)]
|
191 |
|
|
|
193 |
change = kmer['impact'] * (-1 if kmer['direction'] == 'non-human' else 1)
|
194 |
current_prob += change
|
195 |
steps.append((kmer['kmer'], current_prob, change))
|
196 |
+
|
197 |
+
x_vals = range(len(steps))
|
198 |
+
y_vals = [s[1] for s in steps]
|
199 |
+
|
200 |
+
ax.step(x_vals, y_vals, 'b-', where='post', label='Probability', linewidth=2)
|
201 |
+
ax.plot(x_vals, y_vals, 'b.', markersize=10)
|
202 |
|
203 |
+
# Reference line at 0.5
|
204 |
+
ax.axhline(y=0.5, color='r', linestyle='--', label='Neutral (0.5)')
|
205 |
+
ax.set_ylim(0, 1)
|
206 |
+
ax.set_ylabel('Human Probability')
|
207 |
+
ax.set_title(f'K-mer Contributions (final p={human_prob:.3f})')
|
208 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
209 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
for i, (kmer, prob, change) in enumerate(steps):
|
211 |
+
ax.annotate(kmer,
|
|
|
212 |
(i, prob),
|
213 |
xytext=(0, 10 if i % 2 == 0 else -20),
|
214 |
textcoords='offset points',
|
215 |
ha='center',
|
216 |
rotation=45)
|
217 |
|
|
|
218 |
if i > 0:
|
219 |
change_text = f'{change:+.3f}'
|
220 |
color = 'green' if change > 0 else 'red'
|
221 |
+
ax.annotate(change_text,
|
222 |
+
(i, prob),
|
223 |
+
xytext=(0, -20 if i % 2 == 0 else 10),
|
224 |
+
textcoords='offset points',
|
225 |
+
ha='center',
|
226 |
+
color=color)
|
227 |
+
|
228 |
+
ax.legend()
|
229 |
+
plt.tight_layout()
|
230 |
+
return fig
|
231 |
+
|
232 |
+
def plot_kmer_freq_and_sigma(important_kmers):
|
233 |
+
"""
|
234 |
+
Plot frequencies vs. sigma from mean for the top k-mers.
|
235 |
+
This reuses logic from the original create_visualization second subplot,
|
236 |
+
but as its own function for clarity.
|
237 |
+
"""
|
238 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
239 |
|
240 |
# Prepare data
|
241 |
kmers = [k['kmer'] for k in important_kmers]
|
242 |
frequencies = [k['occurrence'] for k in important_kmers]
|
243 |
sigmas = [k['sigma'] for k in important_kmers]
|
244 |
+
colors = ['green' if k['direction'] == 'human' else 'red' for k in important_kmers]
|
245 |
|
|
|
246 |
x = np.arange(len(kmers))
|
247 |
width = 0.35
|
248 |
|
249 |
+
# Frequency bars
|
250 |
+
ax.bar(x - width/2, frequencies, width, label='Frequency (%)', color=colors, alpha=0.6)
|
|
|
251 |
|
252 |
+
# Create a twin axis for sigma
|
253 |
+
ax2 = ax.twinx()
|
254 |
+
# Sigma bars
|
255 |
+
ax2.bar(x + width/2, sigmas, width, label='σ from mean',
|
256 |
+
color=[c if s > 0 else 'gray' for c, s in zip(colors, sigmas)], alpha=0.3)
|
|
|
257 |
|
258 |
+
ax.set_xticks(x)
|
259 |
+
ax.set_xticklabels(kmers, rotation=45)
|
260 |
+
ax.set_ylabel('Frequency (%)')
|
261 |
+
ax2.set_ylabel('Standard Deviations (σ) from Mean')
|
262 |
+
ax.set_title("K-mer Frequencies & Statistical Significance")
|
263 |
+
|
264 |
+
lines1, labels1 = ax.get_legend_handles_labels()
|
265 |
+
lines2, labels2 = ax2.get_legend_handles_labels()
|
266 |
+
ax.legend(lines1 + lines2, labels1 + labels2, loc='best')
|
267 |
|
268 |
plt.tight_layout()
|
269 |
return fig
|
270 |
|
271 |
+
# --------------- Main Prediction Logic ---------------
|
272 |
+
|
273 |
+
def predict_fasta(
|
274 |
+
file_obj,
|
275 |
+
k_size=4,
|
276 |
+
top_k=10,
|
277 |
+
advanced_analysis=False
|
278 |
+
):
|
279 |
+
"""
|
280 |
+
Main function to predict classes for each sequence in an uploaded FASTA.
|
281 |
+
Returns:
|
282 |
+
- Combined textual report for all sequences
|
283 |
+
- A list of generated PIL Image plots
|
284 |
+
"""
|
285 |
+
# 1. Read raw text from file or string
|
286 |
if file_obj is None:
|
287 |
+
return "Please upload a FASTA file", []
|
288 |
|
289 |
try:
|
290 |
if isinstance(file_obj, str):
|
291 |
text = file_obj
|
292 |
else:
|
293 |
+
text = file_obj.decode('utf-8', errors='replace')
|
294 |
except Exception as e:
|
295 |
+
return f"Error reading file: {str(e)}", []
|
296 |
+
|
297 |
+
# 2. Parse the FASTA
|
298 |
+
sequences = parse_fasta(text)
|
299 |
+
if not sequences:
|
300 |
+
return "No valid FASTA sequences found!", []
|
301 |
|
302 |
+
# 3. Load model & scaler
|
303 |
try:
|
304 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
305 |
+
model = VirusClassifier(input_shape=(4 ** k_size)).to(device)
|
306 |
state_dict = torch.load('model.pt', map_location=device)
|
307 |
model.load_state_dict(state_dict)
|
|
|
308 |
model.eval()
|
309 |
+
|
310 |
+
scaler = joblib.load('scaler.pkl')
|
311 |
except Exception as e:
|
312 |
+
return f"Error loading model/scaler: {str(e)}", []
|
313 |
+
|
314 |
+
# 4. Prepare k-mer dictionary for reference
|
315 |
+
all_kmers = [''.join(p) for p in product("ACGT", repeat=k_size)]
|
316 |
+
kmer_dict = {km: i for i, km in enumerate(all_kmers)}
|
317 |
|
318 |
+
# 5. Iterate over sequences and build output
|
319 |
+
final_text_report = []
|
320 |
+
plots = []
|
321 |
|
322 |
+
for idx, (header, seq) in enumerate(sequences, start=1):
|
323 |
+
seq_stats = compute_sequence_stats(seq)
|
|
|
324 |
|
325 |
+
# Convert sequence -> raw freq -> scaled freq
|
326 |
+
raw_kmer_freq = sequence_to_kmer_vector(seq, k=k_size)
|
327 |
+
scaled_kmer_freq = scaler.transform(raw_kmer_freq.reshape(1, -1))
|
328 |
+
X_tensor = torch.FloatTensor(scaled_kmer_freq).to(device)
|
329 |
|
330 |
+
# Predict
|
331 |
with torch.no_grad():
|
332 |
output = model(X_tensor)
|
333 |
probs = torch.softmax(output, dim=1)
|
334 |
|
335 |
+
# Determine class
|
336 |
+
pred_class = torch.argmax(probs, dim=1).item()
|
337 |
+
pred_label = 'human' if pred_class == 1 else 'non-human'
|
338 |
+
human_prob = float(probs[0][1])
|
339 |
+
non_human_prob = float(probs[0][0])
|
340 |
+
confidence = float(torch.max(probs[0]).item())
|
341 |
|
342 |
+
# Compute gradient-based importance
|
343 |
+
importance, target_prob = model.get_gradient_importance(X_tensor, class_index=1)
|
344 |
+
importance = importance[0].cpu().numpy() # shape: (num_features,)
|
345 |
+
|
346 |
+
# Identify top-k features (by absolute gradient)
|
347 |
+
abs_importance = np.abs(importance)
|
348 |
+
sorted_indices = np.argsort(abs_importance)[::-1]
|
349 |
+
top_indices = sorted_indices[:top_k]
|
350 |
|
351 |
+
# Build a list of top k-mers
|
352 |
+
top_kmers_info = []
|
353 |
+
for i in top_indices:
|
354 |
+
kmer_name = all_kmers[i]
|
355 |
+
imp_val = float(importance[i])
|
356 |
+
direction = 'human' if imp_val > 0 else 'non-human'
|
357 |
+
freq_perc = float(raw_kmer_freq[i] * 100.0) # in percent
|
358 |
+
sigma = float(scaled_kmer_freq[0][i]) # This is the scaled value (stdev from mean if the scaler is StandardScaler)
|
359 |
|
360 |
+
top_kmers_info.append({
|
361 |
+
'kmer': kmer_name,
|
362 |
+
'impact': abs(imp_val),
|
363 |
'direction': direction,
|
364 |
+
'occurrence': freq_perc,
|
365 |
'sigma': sigma
|
366 |
})
|
367 |
|
368 |
+
# Text summary for this sequence
|
369 |
+
seq_report = []
|
370 |
+
seq_report.append(f"=== Sequence {idx} ===")
|
371 |
+
seq_report.append(f"Header: {header}")
|
372 |
+
seq_report.append(f"Length: {seq_stats['length']}")
|
373 |
+
seq_report.append(f"GC Content: {seq_stats['gc_content']:.2f}%")
|
374 |
+
seq_report.append(f"A: {seq_stats['counts']['A']}, C: {seq_stats['counts']['C']}, G: {seq_stats['counts']['G']}, T: {seq_stats['counts']['T']}")
|
375 |
+
seq_report.append(f"Prediction: {pred_label} (Confidence: {confidence:.4f})")
|
376 |
+
seq_report.append(f" Human Probability: {human_prob:.4f}")
|
377 |
+
seq_report.append(f" Non-human Probability: {non_human_prob:.4f}")
|
378 |
+
seq_report.append(f"\nTop-{top_k} Influential k-mers (by gradient magnitude):")
|
379 |
+
for tkm in top_kmers_info:
|
380 |
+
seq_report.append(
|
381 |
+
f" {tkm['kmer']}: pushes towards {tkm['direction']} "
|
382 |
+
f"(impact={tkm['impact']:.4f}), occurrence={tkm['occurrence']:.2f}%, "
|
383 |
+
f"sigma={tkm['sigma']:.2f}"
|
384 |
+
)
|
385 |
|
386 |
+
final_text_report.append("\n".join(seq_report))
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
+
# 6. Generate Plots (for each sequence)
|
389 |
+
if advanced_analysis:
|
390 |
+
# 6A. SHAP-like bar chart
|
391 |
+
fig_shap = plot_shap_like_bars(
|
392 |
+
kmers=all_kmers,
|
393 |
+
importance_values=importance,
|
394 |
+
top_k=top_k
|
395 |
+
)
|
396 |
+
buf_shap = io.BytesIO()
|
397 |
+
fig_shap.savefig(buf_shap, format='png', bbox_inches='tight', dpi=150)
|
398 |
+
buf_shap.seek(0)
|
399 |
+
plots.append(Image.open(buf_shap))
|
400 |
+
plt.close(fig_shap)
|
401 |
+
|
402 |
+
# 6B. k-mer distribution histogram
|
403 |
+
fig_kmer_dist = plot_kmer_distribution(raw_kmer_freq, all_kmers)
|
404 |
+
buf_dist = io.BytesIO()
|
405 |
+
fig_kmer_dist.savefig(buf_dist, format='png', bbox_inches='tight', dpi=150)
|
406 |
+
buf_dist.seek(0)
|
407 |
+
plots.append(Image.open(buf_dist))
|
408 |
+
plt.close(fig_kmer_dist)
|
409 |
|
410 |
+
# 6C. Original step visualization for top k k-mers
|
411 |
+
# Sort by actual 'impact' to preserve that step logic
|
412 |
+
# (largest absolute impact first)
|
413 |
+
top_kmers_info_step = sorted(top_kmers_info, key=lambda x: x['impact'], reverse=True)
|
414 |
+
fig_step = create_step_visualization(top_kmers_info_step, human_prob)
|
415 |
+
buf_step = io.BytesIO()
|
416 |
+
fig_step.savefig(buf_step, format='png', bbox_inches='tight', dpi=150)
|
417 |
+
buf_step.seek(0)
|
418 |
+
plots.append(Image.open(buf_step))
|
419 |
+
plt.close(fig_step)
|
420 |
|
421 |
+
# 6D. Frequency vs. sigma bar chart
|
422 |
+
fig_freq_sigma = plot_kmer_freq_and_sigma(top_kmers_info_step)
|
423 |
+
buf_freq_sigma = io.BytesIO()
|
424 |
+
fig_freq_sigma.savefig(buf_freq_sigma, format='png', bbox_inches='tight', dpi=150)
|
425 |
+
buf_freq_sigma.seek(0)
|
426 |
+
plots.append(Image.open(buf_freq_sigma))
|
427 |
+
plt.close(fig_freq_sigma)
|
428 |
+
|
429 |
+
# Combine all text results
|
430 |
+
combined_text = "\n\n".join(final_text_report)
|
431 |
+
return combined_text, plots
|
432 |
+
|
433 |
+
# --------------- Gradio Interface ---------------
|
434 |
|
435 |
+
def run_prediction(
|
436 |
+
file_obj,
|
437 |
+
k_size,
|
438 |
+
top_k,
|
439 |
+
advanced_analysis
|
440 |
+
):
|
441 |
+
"""
|
442 |
+
Wrapper for Gradio to handle the outputs in (text, List[Image]) form.
|
443 |
+
"""
|
444 |
+
text_output, pil_images = predict_fasta(
|
445 |
+
file_obj=file_obj,
|
446 |
+
k_size=k_size,
|
447 |
+
top_k=top_k,
|
448 |
+
advanced_analysis=advanced_analysis
|
449 |
+
)
|
450 |
|
451 |
+
|
452 |
+
return text_output, pil_images
|
453 |
+
|
454 |
+
|
455 |
+
with gr.Blocks() as demo:
|
456 |
+
gr.Markdown("# Virus Host Classifier (Improved!)")
|
457 |
+
gr.Markdown(
|
458 |
+
"Upload a FASTA file and configure k-mer size, number of top features, "
|
459 |
+
"and whether to run advanced analysis (plots of SHAP-like bars & k-mer distribution)."
|
460 |
+
)
|
461 |
+
|
462 |
+
with gr.Row():
|
463 |
+
with gr.Column():
|
464 |
+
fasta_file = gr.File(label="Upload FASTA file", type="binary")
|
465 |
+
kmer_slider = gr.Slider(minimum=2, maximum=6, value=4, step=1, label="K-mer Size")
|
466 |
+
topk_slider = gr.Slider(minimum=5, maximum=20, value=10, step=1, label="Top-k Features")
|
467 |
+
advanced_check = gr.Checkbox(value=False, label="Advanced Analysis")
|
468 |
+
predict_button = gr.Button("Predict")
|
469 |
+
|
470 |
+
with gr.Column():
|
471 |
+
results_text = gr.Textbox(
|
472 |
+
label="Results",
|
473 |
+
lines=20,
|
474 |
+
placeholder="Prediction results will appear here..."
|
475 |
+
)
|
476 |
+
|
477 |
+
# We can display multiple images in a Gallery or as separate outputs.
|
478 |
+
plots_gallery = gr.Gallery(label="Analysis Plots").style(grid=[2], height="auto")
|
479 |
+
|
480 |
+
predict_button.click(
|
481 |
+
fn=run_prediction,
|
482 |
+
inputs=[fasta_file, kmer_slider, topk_slider, advanced_check],
|
483 |
+
outputs=[results_text, plots_gallery]
|
484 |
+
)
|
485 |
|
486 |
if __name__ == "__main__":
|
487 |
+
demo.launch(share=True)
|
488 |
+
|