Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -567,16 +567,20 @@ def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""):
|
|
567 |
# 11. GENE FEATURE ANALYSIS
|
568 |
###############################################################################
|
569 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
def parse_gene_features(text: str) -> List[Dict[str, Any]]:
|
571 |
-
"""
|
572 |
-
Parse gene features from text file in FASTA-like format
|
573 |
-
|
574 |
-
Args:
|
575 |
-
text (str): Input text in FASTA format with gene metadata
|
576 |
-
|
577 |
-
Returns:
|
578 |
-
List[Dict]: List of gene dictionaries containing sequence and metadata
|
579 |
-
"""
|
580 |
genes = []
|
581 |
current_header = None
|
582 |
current_sequence = []
|
@@ -608,15 +612,7 @@ def parse_gene_features(text: str) -> List[Dict[str, Any]]:
|
|
608 |
return genes
|
609 |
|
610 |
def parse_gene_metadata(header: str) -> Dict[str, str]:
|
611 |
-
"""
|
612 |
-
Extract metadata from gene header
|
613 |
-
|
614 |
-
Args:
|
615 |
-
header (str): Gene header line starting with '>'
|
616 |
-
|
617 |
-
Returns:
|
618 |
-
Dict[str, str]: Dictionary of metadata key-value pairs
|
619 |
-
"""
|
620 |
metadata = {}
|
621 |
parts = header.split()
|
622 |
|
@@ -629,18 +625,9 @@ def parse_gene_metadata(header: str) -> Dict[str, str]:
|
|
629 |
return metadata
|
630 |
|
631 |
def parse_location(location_str: str) -> Tuple[Optional[int], Optional[int]]:
|
632 |
-
"""
|
633 |
-
Parse gene location string, handling both forward and complement strands
|
634 |
-
|
635 |
-
Args:
|
636 |
-
location_str (str): Location string (e.g., "1234..5678" or "complement(1234..5678)")
|
637 |
-
|
638 |
-
Returns:
|
639 |
-
Tuple[Optional[int], Optional[int]]: Start and end positions, or (None, None) if parsing fails
|
640 |
-
"""
|
641 |
try:
|
642 |
-
#
|
643 |
-
is_complement = location_str.startswith('complement(')
|
644 |
clean_loc = location_str.replace('complement(', '').replace(')', '')
|
645 |
|
646 |
# Split on '..' and convert to integers
|
@@ -649,43 +636,12 @@ def parse_location(location_str: str) -> Tuple[Optional[int], Optional[int]]:
|
|
649 |
return start, end
|
650 |
else:
|
651 |
return None, None
|
652 |
-
|
653 |
except Exception as e:
|
654 |
print(f"Error parsing location {location_str}: {str(e)}")
|
655 |
return None, None
|
656 |
|
657 |
-
def save_results_to_temp(results: str, prefix: str = "analysis") -> Optional[str]:
|
658 |
-
"""
|
659 |
-
Save results to a temporary file
|
660 |
-
|
661 |
-
Args:
|
662 |
-
results (str): Content to save
|
663 |
-
prefix (str): Prefix for the temporary file name
|
664 |
-
|
665 |
-
Returns:
|
666 |
-
Optional[str]: Path to temporary file, or None if save fails
|
667 |
-
"""
|
668 |
-
try:
|
669 |
-
temp_dir = tempfile.gettempdir()
|
670 |
-
temp_path = os.path.join(temp_dir, f"{prefix}_{os.urandom(4).hex()}.csv")
|
671 |
-
|
672 |
-
with open(temp_path, 'w') as f:
|
673 |
-
f.write(results)
|
674 |
-
return temp_path
|
675 |
-
except Exception as e:
|
676 |
-
print(f"Error saving results: {str(e)}")
|
677 |
-
return None
|
678 |
-
|
679 |
def compute_gene_statistics(gene_shap: np.ndarray) -> Dict[str, float]:
|
680 |
-
"""
|
681 |
-
Compute statistical measures for gene SHAP values
|
682 |
-
|
683 |
-
Args:
|
684 |
-
gene_shap (np.ndarray): Array of SHAP values for a gene
|
685 |
-
|
686 |
-
Returns:
|
687 |
-
Dict[str, float]: Dictionary of statistical measures
|
688 |
-
"""
|
689 |
return {
|
690 |
'avg_shap': float(np.mean(gene_shap)),
|
691 |
'median_shap': float(np.median(gene_shap)),
|
@@ -695,25 +651,132 @@ def compute_gene_statistics(gene_shap: np.ndarray) -> Dict[str, float]:
|
|
695 |
'pos_fraction': float(np.mean(gene_shap > 0))
|
696 |
}
|
697 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
698 |
def analyze_gene_features(sequence_file: str,
|
699 |
features_file: str,
|
700 |
fasta_text: str = "",
|
701 |
features_text: str = "") -> Tuple[str, Optional[str], Optional[Image.Image]]:
|
702 |
-
"""
|
703 |
-
Analyze SHAP values for each gene feature
|
704 |
-
|
705 |
-
Args:
|
706 |
-
sequence_file (str): Path to FASTA file
|
707 |
-
features_file (str): Path to features file
|
708 |
-
fasta_text (str): FASTA content if provided as text
|
709 |
-
features_text (str): Features content if provided as text
|
710 |
-
|
711 |
-
Returns:
|
712 |
-
Tuple[str, Optional[str], Optional[Image.Image]]:
|
713 |
-
- Analysis results text
|
714 |
-
- Path to CSV file
|
715 |
-
- Genome diagram image
|
716 |
-
"""
|
717 |
# First analyze whole sequence
|
718 |
sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
|
719 |
if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
|
@@ -771,16 +834,16 @@ def analyze_gene_features(sequence_file: str,
|
|
771 |
if not gene_results:
|
772 |
return "No valid genes could be processed", None, None
|
773 |
|
|
|
|
|
|
|
774 |
# Create results text
|
775 |
results_text = "Gene Analysis Results:\n\n"
|
776 |
results_text += f"Total genes analyzed: {len(gene_results)}\n"
|
777 |
results_text += f"Human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Human')}\n"
|
778 |
results_text += f"Non-human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Non-human')}\n\n"
|
779 |
|
780 |
-
|
781 |
-
sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']), reverse=True)
|
782 |
-
|
783 |
-
results_text += "Top 10 genes by signal strength:\n"
|
784 |
for gene in sorted_genes[:10]:
|
785 |
results_text += (
|
786 |
f"Gene: {gene['gene_name']}\n"
|
@@ -803,99 +866,28 @@ def analyze_gene_features(sequence_file: str,
|
|
803 |
)
|
804 |
|
805 |
# Save CSV to temp file
|
806 |
-
csv_path = save_results_to_temp(csv_content, "gene_analysis")
|
807 |
-
|
808 |
try:
|
809 |
-
|
810 |
-
|
811 |
-
except Exception as e:
|
812 |
-
print(f"Error creating genome diagram: {str(e)}")
|
813 |
-
diagram_img = create_error_image(str(e))
|
814 |
-
|
815 |
-
return results_text, csv_path, diagram_img
|
816 |
-
|
817 |
-
def create_error_image(error_message: str) -> Image.Image:
|
818 |
-
"""
|
819 |
-
Create an error image with message
|
820 |
-
|
821 |
-
Args:
|
822 |
-
error_message (str): Error message to display
|
823 |
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
try:
|
830 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 12)
|
831 |
-
except:
|
832 |
-
font = None
|
833 |
-
draw.text((10, 40), f"Error creating genome diagram: {error_message}",
|
834 |
-
fill='black', font=font)
|
835 |
-
return img
|
836 |
-
|
837 |
-
def create_genome_diagram(gene_results: List[Dict[str, Any]],
|
838 |
-
genome_length: int) -> Image.Image:
|
839 |
-
"""
|
840 |
-
Create genome diagram using BioPython
|
841 |
|
842 |
-
|
843 |
-
gene_results (List[Dict]): List of gene analysis results
|
844 |
-
genome_length (int): Total length of the genome
|
845 |
-
|
846 |
-
Returns:
|
847 |
-
Image.Image: Genome diagram image
|
848 |
-
"""
|
849 |
try:
|
850 |
-
|
851 |
-
gd_diagram = GenomeDiagram.Diagram("Genome SHAP Analysis")
|
852 |
-
gd_track = gd_diagram.new_track(1, name="Genes")
|
853 |
-
gd_feature_set = gd_track.new_set()
|
854 |
-
|
855 |
-
# Add features
|
856 |
-
for gene in gene_results:
|
857 |
-
# Create feature
|
858 |
-
feature = SeqFeature(
|
859 |
-
FeatureLocation(gene['start'], gene['end']),
|
860 |
-
type="gene"
|
861 |
-
)
|
862 |
-
|
863 |
-
# Calculate color based on SHAP value
|
864 |
-
if gene['avg_shap'] > 0:
|
865 |
-
intensity = min(1.0, abs(gene['avg_shap']) * 2)
|
866 |
-
color = colors.Color(1-intensity, 1-intensity, 1) # Red
|
867 |
-
else:
|
868 |
-
intensity = min(1.0, abs(gene['avg_shap']) * 2)
|
869 |
-
color = colors.Color(1-intensity, 1-intensity, 1) # Blue
|
870 |
-
|
871 |
-
# Add to diagram
|
872 |
-
gd_feature_set.add_feature(
|
873 |
-
feature,
|
874 |
-
color=color,
|
875 |
-
label=True,
|
876 |
-
name=f"{gene['gene_name']}\n(SHAP: {gene['avg_shap']:.3f})"
|
877 |
-
)
|
878 |
-
|
879 |
-
# Draw diagram
|
880 |
-
gd_diagram.draw(
|
881 |
-
format="linear",
|
882 |
-
orientation="landscape",
|
883 |
-
pagesize=(15, 5),
|
884 |
-
start=0,
|
885 |
-
end=genome_length,
|
886 |
-
fragments=1
|
887 |
-
)
|
888 |
-
|
889 |
-
# Save to BytesIO and convert to PIL Image
|
890 |
-
buffer = io.BytesIO()
|
891 |
-
gd_diagram.write(buffer, "PNG")
|
892 |
-
buffer.seek(0)
|
893 |
-
return Image.open(buffer)
|
894 |
-
|
895 |
except Exception as e:
|
896 |
-
print(f"Error creating
|
897 |
-
|
898 |
-
|
|
|
|
|
|
|
|
|
|
|
899 |
###############################################################################
|
900 |
# 12. DOWNLOAD FUNCTIONS
|
901 |
###############################################################################
|
|
|
567 |
# 11. GENE FEATURE ANALYSIS
|
568 |
###############################################################################
|
569 |
|
570 |
+
import io
|
571 |
+
from io import BytesIO
|
572 |
+
from PIL import Image, ImageDraw, ImageFont
|
573 |
+
import numpy as np
|
574 |
+
import pandas as pd
|
575 |
+
import tempfile
|
576 |
+
import os
|
577 |
+
from typing import List, Dict, Tuple, Optional, Any
|
578 |
+
import matplotlib.pyplot as plt
|
579 |
+
from matplotlib.colors import LinearSegmentedColormap
|
580 |
+
import seaborn as sns
|
581 |
+
|
582 |
def parse_gene_features(text: str) -> List[Dict[str, Any]]:
|
583 |
+
"""Parse gene features from text file in FASTA-like format"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
584 |
genes = []
|
585 |
current_header = None
|
586 |
current_sequence = []
|
|
|
612 |
return genes
|
613 |
|
614 |
def parse_gene_metadata(header: str) -> Dict[str, str]:
|
615 |
+
"""Extract metadata from gene header"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
metadata = {}
|
617 |
parts = header.split()
|
618 |
|
|
|
625 |
return metadata
|
626 |
|
627 |
def parse_location(location_str: str) -> Tuple[Optional[int], Optional[int]]:
|
628 |
+
"""Parse gene location string, handling both forward and complement strands"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
629 |
try:
|
630 |
+
# Remove 'complement(' and ')' if present
|
|
|
631 |
clean_loc = location_str.replace('complement(', '').replace(')', '')
|
632 |
|
633 |
# Split on '..' and convert to integers
|
|
|
636 |
return start, end
|
637 |
else:
|
638 |
return None, None
|
|
|
639 |
except Exception as e:
|
640 |
print(f"Error parsing location {location_str}: {str(e)}")
|
641 |
return None, None
|
642 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
643 |
def compute_gene_statistics(gene_shap: np.ndarray) -> Dict[str, float]:
|
644 |
+
"""Compute statistical measures for gene SHAP values"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
645 |
return {
|
646 |
'avg_shap': float(np.mean(gene_shap)),
|
647 |
'median_shap': float(np.median(gene_shap)),
|
|
|
651 |
'pos_fraction': float(np.mean(gene_shap > 0))
|
652 |
}
|
653 |
|
654 |
+
def create_simple_genome_diagram(gene_results: List[Dict[str, Any]], genome_length: int) -> Image.Image:
|
655 |
+
"""Create a simple genome diagram using PIL"""
|
656 |
+
# Image dimensions
|
657 |
+
width = 1500
|
658 |
+
height = 600
|
659 |
+
margin = 50
|
660 |
+
track_height = 40
|
661 |
+
|
662 |
+
# Create image with white background
|
663 |
+
img = Image.new('RGB', (width, height), 'white')
|
664 |
+
draw = ImageDraw.Draw(img)
|
665 |
+
|
666 |
+
# Try to load font, fall back to default if unavailable
|
667 |
+
try:
|
668 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 12)
|
669 |
+
title_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
|
670 |
+
except:
|
671 |
+
font = None
|
672 |
+
title_font = None
|
673 |
+
|
674 |
+
# Draw title
|
675 |
+
draw.text((margin, margin//2), "Genome SHAP Analysis",
|
676 |
+
fill='black', font=title_font or font)
|
677 |
+
|
678 |
+
# Draw genome line
|
679 |
+
line_y = height // 2
|
680 |
+
draw.line([(margin, line_y), (width - margin, line_y)], fill='black', width=2)
|
681 |
+
|
682 |
+
# Calculate scale factor
|
683 |
+
scale = (width - 2 * margin) / genome_length
|
684 |
+
|
685 |
+
# Draw scale markers
|
686 |
+
for i in range(0, genome_length + 1, genome_length // 10):
|
687 |
+
x = margin + i * scale
|
688 |
+
draw.line([(x, line_y - 5), (x, line_y + 5)], fill='black', width=1)
|
689 |
+
draw.text((x - 20, line_y + 10), f"{i:,}", fill='black', font=font)
|
690 |
+
|
691 |
+
# Sort genes by absolute SHAP value for drawing
|
692 |
+
sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']))
|
693 |
+
|
694 |
+
# Draw genes
|
695 |
+
for gene in sorted_genes:
|
696 |
+
# Calculate position
|
697 |
+
start_x = margin + gene['start'] * scale
|
698 |
+
end_x = margin + gene['end'] * scale
|
699 |
+
|
700 |
+
# Calculate color based on SHAP value
|
701 |
+
if gene['avg_shap'] > 0:
|
702 |
+
intensity = min(255, int(abs(gene['avg_shap'] * 500)))
|
703 |
+
color = (255, 255 - intensity, 255 - intensity) # Red
|
704 |
+
else:
|
705 |
+
intensity = min(255, int(abs(gene['avg_shap'] * 500)))
|
706 |
+
color = (255 - intensity, 255 - intensity, 255) # Blue
|
707 |
+
|
708 |
+
# Draw gene box
|
709 |
+
draw.rectangle([
|
710 |
+
(start_x, line_y - track_height // 2),
|
711 |
+
(end_x, line_y + track_height // 2)
|
712 |
+
], fill=color, outline='black')
|
713 |
+
|
714 |
+
# Draw gene name
|
715 |
+
label = f"{gene['gene_name']}"
|
716 |
+
label_bbox = draw.textbbox((0, 0), label, font=font)
|
717 |
+
label_width = label_bbox[2] - label_bbox[0]
|
718 |
+
|
719 |
+
# Try to place label, alternating above and below
|
720 |
+
if sorted_genes.index(gene) % 2 == 0:
|
721 |
+
text_y = line_y - track_height - 15
|
722 |
+
else:
|
723 |
+
text_y = line_y + track_height + 5
|
724 |
+
|
725 |
+
# Draw label with rotation if space is tight
|
726 |
+
gene_width = end_x - start_x
|
727 |
+
if gene_width > label_width:
|
728 |
+
# Horizontal label
|
729 |
+
text_x = start_x + (gene_width - label_width) // 2
|
730 |
+
draw.text((text_x, text_y), label, fill='black', font=font)
|
731 |
+
elif gene_width > 20:
|
732 |
+
# Create rotated text image
|
733 |
+
txt_img = Image.new('RGBA', (label_width, 20), (255, 255, 255, 0))
|
734 |
+
txt_draw = ImageDraw.Draw(txt_img)
|
735 |
+
txt_draw.text((0, 0), label, font=font, fill='black')
|
736 |
+
txt_img = txt_img.rotate(90, expand=True)
|
737 |
+
img.paste(txt_img, (int(start_x), text_y), txt_img)
|
738 |
+
|
739 |
+
# Draw legend
|
740 |
+
legend_x = margin
|
741 |
+
legend_y = height - margin
|
742 |
+
draw.text((legend_x, legend_y - 60), "SHAP Values:", fill='black', font=font)
|
743 |
+
|
744 |
+
# Draw legend boxes
|
745 |
+
box_width = 20
|
746 |
+
box_height = 20
|
747 |
+
spacing = 15
|
748 |
+
|
749 |
+
# Strong human-like
|
750 |
+
draw.rectangle([(legend_x, legend_y - 45, legend_x + box_width, legend_y - 45 + box_height)],
|
751 |
+
fill=(255, 0, 0), outline='black')
|
752 |
+
draw.text((legend_x + box_width + spacing, legend_y - 45),
|
753 |
+
"Strong human-like signal", fill='black', font=font)
|
754 |
+
|
755 |
+
# Weak human-like
|
756 |
+
draw.rectangle([(legend_x, legend_y - 20, legend_x + box_width, legend_y - 20 + box_height)],
|
757 |
+
fill=(255, 200, 200), outline='black')
|
758 |
+
draw.text((legend_x + box_width + spacing, legend_y - 20),
|
759 |
+
"Weak human-like signal", fill='black', font=font)
|
760 |
+
|
761 |
+
# Weak non-human-like
|
762 |
+
draw.rectangle([(legend_x + 250, legend_y - 45, legend_x + 250 + box_width, legend_y - 45 + box_height)],
|
763 |
+
fill=(200, 200, 255), outline='black')
|
764 |
+
draw.text((legend_x + 250 + box_width + spacing, legend_y - 45),
|
765 |
+
"Weak non-human-like signal", fill='black', font=font)
|
766 |
+
|
767 |
+
# Strong non-human-like
|
768 |
+
draw.rectangle([(legend_x + 250, legend_y - 20, legend_x + 250 + box_width, legend_y - 20 + box_height)],
|
769 |
+
fill=(0, 0, 255), outline='black')
|
770 |
+
draw.text((legend_x + 250 + box_width + spacing, legend_y - 20),
|
771 |
+
"Strong non-human-like signal", fill='black', font=font)
|
772 |
+
|
773 |
+
return img
|
774 |
+
|
775 |
def analyze_gene_features(sequence_file: str,
|
776 |
features_file: str,
|
777 |
fasta_text: str = "",
|
778 |
features_text: str = "") -> Tuple[str, Optional[str], Optional[Image.Image]]:
|
779 |
+
"""Analyze SHAP values for each gene feature"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
780 |
# First analyze whole sequence
|
781 |
sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
|
782 |
if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
|
|
|
834 |
if not gene_results:
|
835 |
return "No valid genes could be processed", None, None
|
836 |
|
837 |
+
# Sort genes by absolute SHAP value
|
838 |
+
sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']), reverse=True)
|
839 |
+
|
840 |
# Create results text
|
841 |
results_text = "Gene Analysis Results:\n\n"
|
842 |
results_text += f"Total genes analyzed: {len(gene_results)}\n"
|
843 |
results_text += f"Human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Human')}\n"
|
844 |
results_text += f"Non-human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Non-human')}\n\n"
|
845 |
|
846 |
+
results_text += "Top 10 most distinctive genes:\n"
|
|
|
|
|
|
|
847 |
for gene in sorted_genes[:10]:
|
848 |
results_text += (
|
849 |
f"Gene: {gene['gene_name']}\n"
|
|
|
866 |
)
|
867 |
|
868 |
# Save CSV to temp file
|
|
|
|
|
869 |
try:
|
870 |
+
temp_dir = tempfile.gettempdir()
|
871 |
+
temp_path = os.path.join(temp_dir, f"gene_analysis_{os.urandom(4).hex()}.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
872 |
|
873 |
+
with open(temp_path, 'w') as f:
|
874 |
+
f.write(csv_content)
|
875 |
+
except Exception as e:
|
876 |
+
print(f"Error saving CSV: {str(e)}")
|
877 |
+
temp_path = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
878 |
|
879 |
+
# Create visualization
|
|
|
|
|
|
|
|
|
|
|
|
|
880 |
try:
|
881 |
+
diagram_img = create_simple_genome_diagram(gene_results, len(shap_means))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
except Exception as e:
|
883 |
+
print(f"Error creating visualization: {str(e)}")
|
884 |
+
# Create error image
|
885 |
+
diagram_img = Image.new('RGB', (800, 100), color='white')
|
886 |
+
draw = ImageDraw.Draw(diagram_img)
|
887 |
+
draw.text((10, 40), f"Error creating visualization: {str(e)}", fill='black')
|
888 |
+
|
889 |
+
return results_text, temp_path, diagram_img
|
890 |
+
|
891 |
###############################################################################
|
892 |
# 12. DOWNLOAD FUNCTIONS
|
893 |
###############################################################################
|