Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,14 @@ import matplotlib.pyplot as plt
|
|
8 |
import matplotlib.colors as mcolors
|
9 |
import io
|
10 |
from io import BytesIO # Import io then BytesIO
|
11 |
-
from PIL import Image, ImageDraw
|
12 |
from Bio.Graphics import GenomeDiagram
|
13 |
from Bio.SeqFeature import SeqFeature, FeatureLocation
|
14 |
from reportlab.lib import colors
|
|
|
|
|
|
|
|
|
15 |
|
16 |
###############################################################################
|
17 |
# 1. MODEL DEFINITION
|
@@ -563,8 +567,16 @@ def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""):
|
|
563 |
# 11. GENE FEATURE ANALYSIS
|
564 |
###############################################################################
|
565 |
|
566 |
-
def parse_gene_features(text):
|
567 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
568 |
genes = []
|
569 |
current_header = None
|
570 |
current_sequence = []
|
@@ -573,6 +585,7 @@ def parse_gene_features(text):
|
|
573 |
line = line.strip()
|
574 |
if not line:
|
575 |
continue
|
|
|
576 |
if line.startswith('>'):
|
577 |
if current_header:
|
578 |
genes.append({
|
@@ -594,8 +607,16 @@ def parse_gene_features(text):
|
|
594 |
|
595 |
return genes
|
596 |
|
597 |
-
def parse_gene_metadata(header):
|
598 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
metadata = {}
|
600 |
parts = header.split()
|
601 |
|
@@ -607,8 +628,92 @@ def parse_gene_metadata(header):
|
|
607 |
|
608 |
return metadata
|
609 |
|
610 |
-
def
|
611 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
# First analyze whole sequence
|
613 |
sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
|
614 |
if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
|
@@ -618,14 +723,14 @@ def analyze_gene_features(sequence_file, features_file, fasta_text="", features_
|
|
618 |
shap_means = sequence_results[3]["shap_means"]
|
619 |
|
620 |
# Parse gene features
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
with open(features_file, 'r') as f:
|
626 |
genes = parse_gene_features(f.read())
|
627 |
-
|
628 |
-
|
629 |
|
630 |
# Analyze each gene
|
631 |
gene_results = []
|
@@ -635,78 +740,142 @@ def analyze_gene_features(sequence_file, features_file, fasta_text="", features_
|
|
635 |
if not location:
|
636 |
continue
|
637 |
|
638 |
-
|
639 |
-
start
|
640 |
-
|
|
|
641 |
# Get SHAP values for this region
|
642 |
gene_shap = shap_means[start:end]
|
643 |
-
|
644 |
|
645 |
gene_results.append({
|
646 |
'gene_name': gene['metadata'].get('gene', 'Unknown'),
|
647 |
'location': location,
|
648 |
-
'avg_shap': avg_shap,
|
649 |
'start': start,
|
650 |
'end': end,
|
651 |
'locus_tag': gene['metadata'].get('locus_tag', ''),
|
652 |
-
'
|
653 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
})
|
655 |
|
656 |
except Exception as e:
|
657 |
print(f"Error processing gene {gene['metadata'].get('gene', 'Unknown')}: {str(e)}")
|
658 |
continue
|
|
|
|
|
|
|
659 |
|
660 |
-
# Create
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
#
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
gd_feature_set = gd_track.new_set()
|
684 |
-
|
685 |
-
# Add features
|
686 |
for gene in gene_results:
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
|
|
691 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
|
|
|
|
|
|
|
709 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
710 |
# Draw diagram
|
711 |
gd_diagram.draw(
|
712 |
format="linear",
|
@@ -722,13 +891,10 @@ def create_genome_diagram(gene_results, genome_length):
|
|
722 |
gd_diagram.write(buffer, "PNG")
|
723 |
buffer.seek(0)
|
724 |
return Image.open(buffer)
|
|
|
725 |
except Exception as e:
|
726 |
print(f"Error creating genome diagram: {str(e)}")
|
727 |
-
|
728 |
-
error_img = Image.new('RGB', (800, 100), color='white')
|
729 |
-
draw = ImageDraw.Draw(error_img)
|
730 |
-
draw.text((10, 40), f"Error creating genome diagram: {str(e)}", fill='black')
|
731 |
-
return error_img
|
732 |
|
733 |
###############################################################################
|
734 |
# 12. DOWNLOAD FUNCTIONS
|
@@ -822,7 +988,7 @@ with gr.Blocks(css=css) as iface:
|
|
822 |
Upload a FASTA file and corresponding gene features file to analyze SHAP values per gene.
|
823 |
Gene features should be in the format:
|
824 |
```
|
825 |
-
>gene_name [gene=X] [locus_tag=Y] [location=start..end]
|
826 |
SEQUENCE
|
827 |
```
|
828 |
The genome viewer will show genes color-coded by their contribution:
|
@@ -841,7 +1007,7 @@ with gr.Blocks(css=css) as iface:
|
|
841 |
analyze_genes_btn = gr.Button("Analyze Gene Features", variant="primary")
|
842 |
gene_results = gr.Textbox(label="Gene Analysis Results", lines=12, interactive=False)
|
843 |
gene_diagram = gr.Image(label="Genome Diagram with Gene Features")
|
844 |
-
download_gene_results = gr.File(label="Download Gene Analysis", visible=
|
845 |
|
846 |
analyze_genes_btn.click(
|
847 |
analyze_gene_features,
|
|
|
8 |
import matplotlib.colors as mcolors
|
9 |
import io
|
10 |
from io import BytesIO # Import io then BytesIO
|
11 |
+
from PIL import Image, ImageDraw, ImageFont
|
12 |
from Bio.Graphics import GenomeDiagram
|
13 |
from Bio.SeqFeature import SeqFeature, FeatureLocation
|
14 |
from reportlab.lib import colors
|
15 |
+
import pandas as pd
|
16 |
+
import tempfile
|
17 |
+
import os
|
18 |
+
from typing import List, Dict, Tuple, Optional, Any
|
19 |
|
20 |
###############################################################################
|
21 |
# 1. MODEL DEFINITION
|
|
|
567 |
# 11. GENE FEATURE ANALYSIS
|
568 |
###############################################################################
|
569 |
|
570 |
+
def parse_gene_features(text: str) -> List[Dict[str, Any]]:
|
571 |
+
"""
|
572 |
+
Parse gene features from text file in FASTA-like format
|
573 |
+
|
574 |
+
Args:
|
575 |
+
text (str): Input text in FASTA format with gene metadata
|
576 |
+
|
577 |
+
Returns:
|
578 |
+
List[Dict]: List of gene dictionaries containing sequence and metadata
|
579 |
+
"""
|
580 |
genes = []
|
581 |
current_header = None
|
582 |
current_sequence = []
|
|
|
585 |
line = line.strip()
|
586 |
if not line:
|
587 |
continue
|
588 |
+
|
589 |
if line.startswith('>'):
|
590 |
if current_header:
|
591 |
genes.append({
|
|
|
607 |
|
608 |
return genes
|
609 |
|
610 |
+
def parse_gene_metadata(header: str) -> Dict[str, str]:
|
611 |
+
"""
|
612 |
+
Extract metadata from gene header
|
613 |
+
|
614 |
+
Args:
|
615 |
+
header (str): Gene header line starting with '>'
|
616 |
+
|
617 |
+
Returns:
|
618 |
+
Dict[str, str]: Dictionary of metadata key-value pairs
|
619 |
+
"""
|
620 |
metadata = {}
|
621 |
parts = header.split()
|
622 |
|
|
|
628 |
|
629 |
return metadata
|
630 |
|
631 |
+
def parse_location(location_str: str) -> Tuple[Optional[int], Optional[int]]:
|
632 |
+
"""
|
633 |
+
Parse gene location string, handling both forward and complement strands
|
634 |
+
|
635 |
+
Args:
|
636 |
+
location_str (str): Location string (e.g., "1234..5678" or "complement(1234..5678)")
|
637 |
+
|
638 |
+
Returns:
|
639 |
+
Tuple[Optional[int], Optional[int]]: Start and end positions, or (None, None) if parsing fails
|
640 |
+
"""
|
641 |
+
try:
|
642 |
+
# Handle complement strand
|
643 |
+
is_complement = location_str.startswith('complement(')
|
644 |
+
clean_loc = location_str.replace('complement(', '').replace(')', '')
|
645 |
+
|
646 |
+
# Split on '..' and convert to integers
|
647 |
+
if '..' in clean_loc:
|
648 |
+
start, end = map(int, clean_loc.split('..'))
|
649 |
+
return start, end
|
650 |
+
else:
|
651 |
+
return None, None
|
652 |
+
|
653 |
+
except Exception as e:
|
654 |
+
print(f"Error parsing location {location_str}: {str(e)}")
|
655 |
+
return None, None
|
656 |
+
|
657 |
+
def save_results_to_temp(results: str, prefix: str = "analysis") -> Optional[str]:
|
658 |
+
"""
|
659 |
+
Save results to a temporary file
|
660 |
+
|
661 |
+
Args:
|
662 |
+
results (str): Content to save
|
663 |
+
prefix (str): Prefix for the temporary file name
|
664 |
+
|
665 |
+
Returns:
|
666 |
+
Optional[str]: Path to temporary file, or None if save fails
|
667 |
+
"""
|
668 |
+
try:
|
669 |
+
temp_dir = tempfile.gettempdir()
|
670 |
+
temp_path = os.path.join(temp_dir, f"{prefix}_{os.urandom(4).hex()}.csv")
|
671 |
+
|
672 |
+
with open(temp_path, 'w') as f:
|
673 |
+
f.write(results)
|
674 |
+
return temp_path
|
675 |
+
except Exception as e:
|
676 |
+
print(f"Error saving results: {str(e)}")
|
677 |
+
return None
|
678 |
+
|
679 |
+
def compute_gene_statistics(gene_shap: np.ndarray) -> Dict[str, float]:
|
680 |
+
"""
|
681 |
+
Compute statistical measures for gene SHAP values
|
682 |
+
|
683 |
+
Args:
|
684 |
+
gene_shap (np.ndarray): Array of SHAP values for a gene
|
685 |
+
|
686 |
+
Returns:
|
687 |
+
Dict[str, float]: Dictionary of statistical measures
|
688 |
+
"""
|
689 |
+
return {
|
690 |
+
'avg_shap': float(np.mean(gene_shap)),
|
691 |
+
'median_shap': float(np.median(gene_shap)),
|
692 |
+
'std_shap': float(np.std(gene_shap)),
|
693 |
+
'max_shap': float(np.max(gene_shap)),
|
694 |
+
'min_shap': float(np.min(gene_shap)),
|
695 |
+
'pos_fraction': float(np.mean(gene_shap > 0))
|
696 |
+
}
|
697 |
+
|
698 |
+
def analyze_gene_features(sequence_file: str,
|
699 |
+
features_file: str,
|
700 |
+
fasta_text: str = "",
|
701 |
+
features_text: str = "") -> Tuple[str, Optional[str], Optional[Image.Image]]:
|
702 |
+
"""
|
703 |
+
Analyze SHAP values for each gene feature
|
704 |
+
|
705 |
+
Args:
|
706 |
+
sequence_file (str): Path to FASTA file
|
707 |
+
features_file (str): Path to features file
|
708 |
+
fasta_text (str): FASTA content if provided as text
|
709 |
+
features_text (str): Features content if provided as text
|
710 |
+
|
711 |
+
Returns:
|
712 |
+
Tuple[str, Optional[str], Optional[Image.Image]]:
|
713 |
+
- Analysis results text
|
714 |
+
- Path to CSV file
|
715 |
+
- Genome diagram image
|
716 |
+
"""
|
717 |
# First analyze whole sequence
|
718 |
sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
|
719 |
if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
|
|
|
723 |
shap_means = sequence_results[3]["shap_means"]
|
724 |
|
725 |
# Parse gene features
|
726 |
+
try:
|
727 |
+
if features_text.strip():
|
728 |
+
genes = parse_gene_features(features_text)
|
729 |
+
else:
|
730 |
with open(features_file, 'r') as f:
|
731 |
genes = parse_gene_features(f.read())
|
732 |
+
except Exception as e:
|
733 |
+
return f"Error reading features file: {str(e)}", None, None
|
734 |
|
735 |
# Analyze each gene
|
736 |
gene_results = []
|
|
|
740 |
if not location:
|
741 |
continue
|
742 |
|
743 |
+
start, end = parse_location(location)
|
744 |
+
if start is None or end is None:
|
745 |
+
continue
|
746 |
+
|
747 |
# Get SHAP values for this region
|
748 |
gene_shap = shap_means[start:end]
|
749 |
+
stats = compute_gene_statistics(gene_shap)
|
750 |
|
751 |
gene_results.append({
|
752 |
'gene_name': gene['metadata'].get('gene', 'Unknown'),
|
753 |
'location': location,
|
|
|
754 |
'start': start,
|
755 |
'end': end,
|
756 |
'locus_tag': gene['metadata'].get('locus_tag', ''),
|
757 |
+
'avg_shap': stats['avg_shap'],
|
758 |
+
'median_shap': stats['median_shap'],
|
759 |
+
'std_shap': stats['std_shap'],
|
760 |
+
'max_shap': stats['max_shap'],
|
761 |
+
'min_shap': stats['min_shap'],
|
762 |
+
'pos_fraction': stats['pos_fraction'],
|
763 |
+
'classification': 'Human' if stats['avg_shap'] > 0 else 'Non-human',
|
764 |
+
'confidence': abs(stats['avg_shap'])
|
765 |
})
|
766 |
|
767 |
except Exception as e:
|
768 |
print(f"Error processing gene {gene['metadata'].get('gene', 'Unknown')}: {str(e)}")
|
769 |
continue
|
770 |
+
|
771 |
+
if not gene_results:
|
772 |
+
return "No valid genes could be processed", None, None
|
773 |
|
774 |
+
# Create results text
|
775 |
+
results_text = "Gene Analysis Results:\n\n"
|
776 |
+
results_text += f"Total genes analyzed: {len(gene_results)}\n"
|
777 |
+
results_text += f"Human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Human')}\n"
|
778 |
+
results_text += f"Non-human-like genes: {sum(1 for g in gene_results if g['classification'] == 'Non-human')}\n\n"
|
779 |
+
|
780 |
+
# Sort genes by absolute SHAP value for reporting
|
781 |
+
sorted_genes = sorted(gene_results, key=lambda x: abs(x['avg_shap']), reverse=True)
|
782 |
+
|
783 |
+
results_text += "Top 10 genes by signal strength:\n"
|
784 |
+
for gene in sorted_genes[:10]:
|
785 |
+
results_text += (
|
786 |
+
f"Gene: {gene['gene_name']}\n"
|
787 |
+
f"Location: {gene['location']}\n"
|
788 |
+
f"Classification: {gene['classification']} "
|
789 |
+
f"(confidence: {gene['confidence']:.4f})\n"
|
790 |
+
f"Average SHAP: {gene['avg_shap']:.4f}\n\n"
|
791 |
+
)
|
792 |
+
|
793 |
+
# Create CSV content
|
794 |
+
csv_content = "gene_name,location,avg_shap,median_shap,std_shap,max_shap,min_shap,"
|
795 |
+
csv_content += "pos_fraction,classification,confidence,locus_tag\n"
|
796 |
+
|
|
|
|
|
|
|
797 |
for gene in gene_results:
|
798 |
+
csv_content += (
|
799 |
+
f"{gene['gene_name']},{gene['location']},{gene['avg_shap']:.4f},"
|
800 |
+
f"{gene['median_shap']:.4f},{gene['std_shap']:.4f},{gene['max_shap']:.4f},"
|
801 |
+
f"{gene['min_shap']:.4f},{gene['pos_fraction']:.4f},{gene['classification']},"
|
802 |
+
f"{gene['confidence']:.4f},{gene['locus_tag']}\n"
|
803 |
)
|
804 |
+
|
805 |
+
# Save CSV to temp file
|
806 |
+
csv_path = save_results_to_temp(csv_content, "gene_analysis")
|
807 |
+
|
808 |
+
try:
|
809 |
+
# Create genome diagram
|
810 |
+
diagram_img = create_genome_diagram(gene_results, len(shap_means))
|
811 |
+
except Exception as e:
|
812 |
+
print(f"Error creating genome diagram: {str(e)}")
|
813 |
+
diagram_img = create_error_image(str(e))
|
814 |
+
|
815 |
+
return results_text, csv_path, diagram_img
|
816 |
+
|
817 |
+
def create_error_image(error_message: str) -> Image.Image:
|
818 |
+
"""
|
819 |
+
Create an error image with message
|
820 |
+
|
821 |
+
Args:
|
822 |
+
error_message (str): Error message to display
|
823 |
|
824 |
+
Returns:
|
825 |
+
Image.Image: Error image
|
826 |
+
"""
|
827 |
+
img = Image.new('RGB', (800, 100), color='white')
|
828 |
+
draw = ImageDraw.Draw(img)
|
829 |
+
try:
|
830 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 12)
|
831 |
+
except:
|
832 |
+
font = None
|
833 |
+
draw.text((10, 40), f"Error creating genome diagram: {error_message}",
|
834 |
+
fill='black', font=font)
|
835 |
+
return img
|
836 |
+
|
837 |
+
def create_genome_diagram(gene_results: List[Dict[str, Any]],
|
838 |
+
genome_length: int) -> Image.Image:
|
839 |
+
"""
|
840 |
+
Create genome diagram using BioPython
|
841 |
+
|
842 |
+
Args:
|
843 |
+
gene_results (List[Dict]): List of gene analysis results
|
844 |
+
genome_length (int): Total length of the genome
|
845 |
|
846 |
+
Returns:
|
847 |
+
Image.Image: Genome diagram image
|
848 |
+
"""
|
849 |
try:
|
850 |
+
# Create diagram
|
851 |
+
gd_diagram = GenomeDiagram.Diagram("Genome SHAP Analysis")
|
852 |
+
gd_track = gd_diagram.new_track(1, name="Genes")
|
853 |
+
gd_feature_set = gd_track.new_set()
|
854 |
+
|
855 |
+
# Add features
|
856 |
+
for gene in gene_results:
|
857 |
+
# Create feature
|
858 |
+
feature = SeqFeature(
|
859 |
+
FeatureLocation(gene['start'], gene['end']),
|
860 |
+
type="gene"
|
861 |
+
)
|
862 |
+
|
863 |
+
# Calculate color based on SHAP value
|
864 |
+
if gene['avg_shap'] > 0:
|
865 |
+
intensity = min(1.0, abs(gene['avg_shap']) * 2)
|
866 |
+
color = colors.Color(1-intensity, 1-intensity, 1) # Red
|
867 |
+
else:
|
868 |
+
intensity = min(1.0, abs(gene['avg_shap']) * 2)
|
869 |
+
color = colors.Color(1-intensity, 1-intensity, 1) # Blue
|
870 |
+
|
871 |
+
# Add to diagram
|
872 |
+
gd_feature_set.add_feature(
|
873 |
+
feature,
|
874 |
+
color=color,
|
875 |
+
label=True,
|
876 |
+
name=f"{gene['gene_name']}\n(SHAP: {gene['avg_shap']:.3f})"
|
877 |
+
)
|
878 |
+
|
879 |
# Draw diagram
|
880 |
gd_diagram.draw(
|
881 |
format="linear",
|
|
|
891 |
gd_diagram.write(buffer, "PNG")
|
892 |
buffer.seek(0)
|
893 |
return Image.open(buffer)
|
894 |
+
|
895 |
except Exception as e:
|
896 |
print(f"Error creating genome diagram: {str(e)}")
|
897 |
+
return create_error_image(str(e))
|
|
|
|
|
|
|
|
|
898 |
|
899 |
###############################################################################
|
900 |
# 12. DOWNLOAD FUNCTIONS
|
|
|
988 |
Upload a FASTA file and corresponding gene features file to analyze SHAP values per gene.
|
989 |
Gene features should be in the format:
|
990 |
```
|
991 |
+
>gene_name [gene=X] [locus_tag=Y] [location=start..end] or [location=complement(start..end)]
|
992 |
SEQUENCE
|
993 |
```
|
994 |
The genome viewer will show genes color-coded by their contribution:
|
|
|
1007 |
analyze_genes_btn = gr.Button("Analyze Gene Features", variant="primary")
|
1008 |
gene_results = gr.Textbox(label="Gene Analysis Results", lines=12, interactive=False)
|
1009 |
gene_diagram = gr.Image(label="Genome Diagram with Gene Features")
|
1010 |
+
download_gene_results = gr.File(label="Download Gene Analysis (CSV)", visible=True)
|
1011 |
|
1012 |
analyze_genes_btn.click(
|
1013 |
analyze_gene_features,
|