import gradio as gr import torch import joblib import numpy as np from itertools import product import torch.nn as nn import shap import matplotlib.pyplot as plt import io from PIL import Image # Import PIL for image handling class VirusClassifier(nn.Module): def __init__(self, input_shape: int): super(VirusClassifier, self).__init__() self.network = nn.Sequential( nn.Linear(input_shape, 64), nn.GELU(), nn.BatchNorm1d(64), nn.Dropout(0.3), nn.Linear(64, 32), nn.GELU(), nn.BatchNorm1d(32), nn.Dropout(0.3), nn.Linear(32, 32), nn.GELU(), nn.Linear(32, 2) ) def forward(self, x): return self.network(x) def get_feature_importance(self, x): """Calculate feature importance using gradient-based method""" x.requires_grad_(True) output = self.network(x) importance = torch.zeros_like(x) for i in range(output.shape[1]): if x.grad is not None: x.grad.zero_() output[..., i].sum().backward(retain_graph=True) importance += torch.abs(x.grad) return importance def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: """Convert sequence to k-mer frequency vector""" kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} vec = np.zeros(len(kmers), dtype=np.float32) for i in range(len(sequence) - k + 1): kmer = sequence[i:i+k] if kmer in kmer_dict: vec[kmer_dict[kmer]] += 1 total_kmers = len(sequence) - k + 1 if total_kmers > 0: vec = vec / total_kmers return vec def parse_fasta(text): sequences = [] current_header = None current_sequence = [] for line in text.split('\n'): line = line.strip() if not line: continue if line.startswith('>'): if current_header: sequences.append((current_header, ''.join(current_sequence))) current_header = line[1:] current_sequence = [] else: current_sequence.append(line.upper()) if current_header: sequences.append((current_header, ''.join(current_sequence))) return sequences def predict(file_obj): if file_obj is None: return "Please upload a FASTA file", None try: if isinstance(file_obj, str): text = file_obj else: text = file_obj.decode('utf-8') except Exception as e: return f"Error reading file: {str(e)}", None k = 4 kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} try: device = 'cuda' if torch.cuda.is_available() else 'cpu' model = VirusClassifier(256).to(device) state_dict = torch.load('model.pt', map_location=device) model.load_state_dict(state_dict) scaler = joblib.load('scaler.pkl') model.eval() except Exception as e: return f"Error loading model: {str(e)}", None results_text = "" plot_image = None try: sequences = parse_fasta(text) header, seq = sequences[0] raw_freq_vector = sequence_to_kmer_vector(seq) kmer_vector = scaler.transform(raw_freq_vector.reshape(1, -1)) X_tensor = torch.FloatTensor(kmer_vector).to(device) with torch.no_grad(): output = model(X_tensor) probs = torch.softmax(output, dim=1) importance = model.get_feature_importance(X_tensor) kmer_importance = importance[0].cpu().numpy() if np.max(np.abs(kmer_importance)) != 0: kmer_importance = kmer_importance / np.max(np.abs(kmer_importance)) * 0.002 top_k = 10 top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1] important_kmers = [ { 'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)], 'importance': float(kmer_importance[i]), 'frequency': float(raw_freq_vector[i]), 'scaled': float(kmer_vector[0][i]) } for i in top_indices ] top_features = [item['kmer'] for item in important_kmers] top_values = [item['importance'] for item in important_kmers] others_mask = np.ones_like(kmer_importance, dtype=bool) others_mask[top_indices] = False others_sum = np.sum(kmer_importance[others_mask]) top_features.append("Others") top_values.append(others_sum) # Set base_values and expected_value to 0.5 for the binary classification baseline explanation = shap.Explanation( values=np.array(top_values), base_values=0.5, data=np.array([ raw_freq_vector[kmer_dict[feat]] if feat != "Others" else np.sum(raw_freq_vector[others_mask]) for feat in top_features ]), feature_names=top_features ) explanation.expected_value = 0.5 fig = shap.plots._waterfall.waterfall_legacy(explanation, show=False) buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) plot_image = Image.open(buf) pred_class = 1 if probs[0][1] > probs[0][0] else 0 pred_label = 'human' if pred_class == 1 else 'non-human' results_text += f"""Sequence: {header} Prediction: {pred_label} Confidence: {float(max(probs[0])):0.4f} Human probability: {float(probs[0][1]):0.4f} Non-human probability: {float(probs[0][0]):0.4f} Most influential k-mers (ranked by importance):""" for kmer in important_kmers: results_text += f"\n {kmer['kmer']}: " results_text += f"impact={kmer['importance']:.4f}, " results_text += f"occurrence={kmer['frequency']*100:.2f}% of sequence " if kmer['scaled'] > 0: results_text += f"(appears {abs(kmer['scaled']):.2f}σ more than average)" else: results_text += f"(appears {abs(kmer['scaled']):.2f}σ less than average)" except Exception as e: return f"Error processing sequences: {str(e)}", None return results_text, plot_image iface = gr.Interface( fn=predict, inputs=gr.File(label="Upload FASTA file", type="binary"), outputs=[gr.Textbox(label="Results"), gr.Image(label="SHAP Waterfall Plot")], title="Virus Host Classifier" ) if __name__ == "__main__": iface.launch(share=True)