import gradio as gr import torch import joblib import numpy as np from itertools import product import torch.nn as nn import shap import matplotlib.pyplot as plt import io import json from PIL import Image class VirusClassifier(nn.Module): def __init__(self, input_shape: int): super(VirusClassifier, self).__init__() self.network = nn.Sequential( nn.Linear(input_shape, 64), nn.GELU(), nn.BatchNorm1d(64), nn.Dropout(0.3), nn.Linear(64, 32), nn.GELU(), nn.BatchNorm1d(32), nn.Dropout(0.3), nn.Linear(32, 32), nn.GELU(), nn.Linear(32, 2) ) def forward(self, x): return self.network(x) def get_feature_importance(self, x): """Calculate feature importance using gradient-based method for the human class (index 1)""" x.requires_grad_(True) output = self.network(x) probs = torch.softmax(output, dim=1) # We focus on the human class (index 1) probability human_prob = probs[..., 1] human_prob.backward() # The gradient shows how each feature affects the human probability importance = x.grad return importance, float(human_prob) def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: """Convert sequence to k-mer frequency vector""" kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} vec = np.zeros(len(kmers), dtype=np.float32) for i in range(len(sequence) - k + 1): kmer = sequence[i:i+k] if kmer in kmer_dict: vec[kmer_dict[kmer]] += 1 total_kmers = len(sequence) - k + 1 if total_kmers > 0: vec = vec / total_kmers return vec def parse_fasta(text): sequences = [] current_header = None current_sequence = [] for line in text.split('\n'): line = line.strip() if not line: continue if line.startswith('>'): if current_header: sequences.append((current_header, ''.join(current_sequence))) current_header = line[1:] current_sequence = [] else: current_sequence.append(line.upper()) if current_header: sequences.append((current_header, ''.join(current_sequence))) return sequences def predict(file_obj): if file_obj is None: return "Please upload a FASTA file", None try: if isinstance(file_obj, str): text = file_obj else: text = file_obj.decode('utf-8') except Exception as e: return f"Error reading file: {str(e)}", None k = 4 kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} try: device = 'cuda' if torch.cuda.is_available() else 'cpu' model = VirusClassifier(256).to(device) state_dict = torch.load('model.pt', map_location=device) model.load_state_dict(state_dict) scaler = joblib.load('scaler.pkl') model.eval() except Exception as e: return f"Error loading model: {str(e)}", None results_text = "" plot_image = None try: sequences = parse_fasta(text) header, seq = sequences[0] raw_freq_vector = sequence_to_kmer_vector(seq) kmer_vector = scaler.transform(raw_freq_vector.reshape(1, -1)) X_tensor = torch.FloatTensor(kmer_vector).to(device) # Calculate final probabilities first with torch.no_grad(): output = model(X_tensor) probs = torch.softmax(output, dim=1) human_prob = float(probs[0][1]) # Get feature importance using integrated gradients baseline = torch.zeros_like(X_tensor) # baseline of zeros steps = 50 all_importance = [] for i in range(steps + 1): alpha = i / steps interpolated = baseline + alpha * (X_tensor - baseline) interpolated.requires_grad_(True) output = model(interpolated) probs = torch.softmax(output, dim=1) human_class = probs[..., 1] if interpolated.grad is not None: interpolated.grad.zero_() human_class.backward() all_importance.append(interpolated.grad.cpu().numpy()) # Average the gradients kmer_importance = np.mean(all_importance, axis=0)[0] # Scale to match probability difference target_diff = human_prob - 0.5 # difference from neutral prediction current_sum = np.sum(kmer_importance) if current_sum != 0: # avoid division by zero kmer_importance = kmer_importance * (target_diff / current_sum) # Get top k-mers by absolute importance top_k = 10 top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1] important_kmers = [ { 'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)], 'importance': float(kmer_importance[i]), 'frequency': float(raw_freq_vector[i]), 'scaled': float(kmer_vector[0][i]) } for i in top_indices ] # Prepare data for SHAP waterfall plot top_features = [item['kmer'] for item in important_kmers] top_values = [item['importance'] for item in important_kmers] # Calculate the impact of remaining features others_mask = np.ones_like(kmer_importance, dtype=bool) others_mask[top_indices] = False others_sum = np.sum(kmer_importance[others_mask]) top_features.append("Others") top_values.append(others_sum) # Calculate final probabilities first with torch.no_grad(): output = model(X_tensor) probs = torch.softmax(output, dim=1) human_prob = float(probs[0][1]) # Create SHAP explanation # We'll use the actual probabilities for alignment explanation = shap.Explanation( values=np.array(top_values), base_values=0.5, # Start from neutral prediction data=np.array([ raw_freq_vector[kmer_dict[feat]] if feat != "Others" else np.sum(raw_freq_vector[others_mask]) for feat in top_features ]), feature_names=top_features ) explanation.expected_value = 0.5 # Start from neutral prediction # Calculate step-by-step probabilities current_prob = 0.5 # Start at neutral steps = [('Start', current_prob, 0)] # Process each k-mer contribution for kmer in important_kmers: change = kmer['importance'] current_prob += change steps.append((kmer['kmer'], current_prob, change)) # Add final "Others" contribution current_prob += others_sum steps.append(('Others', current_prob, others_sum)) # Create step plot plt.figure(figsize=(12, 6)) x = range(len(steps)) y = [step[1] for step in steps] # Plot steps plt.step(x, y, 'b-', where='post', label='Probability', linewidth=2) plt.plot(x, y, 'b.', markersize=10) # Add reference line plt.axhline(y=0.5, color='r', linestyle='--', label='Neutral (0.5)') # Customize plot plt.grid(True, linestyle='--', alpha=0.7) plt.ylim(0, 1) plt.ylabel('Human Probability') plt.title(f'K-mer Contributions to Prediction (final prob: {human_prob:.3f})') # Add labels for each point for i, (kmer, prob, change) in enumerate(steps): # Add k-mer label plt.annotate(kmer, (i, prob), xytext=(0, 10 if i % 2 == 0 else -20), # Alternate up/down textcoords='offset points', ha='center', rotation=45 if len(kmer) > 5 else 0) # Add change value if i > 0: # Skip first point (Start) change_text = f'{change:+.3f}' color = 'green' if change > 0 else 'red' plt.annotate(change_text, (i, prob), xytext=(0, -20 if i % 2 == 0 else 10), textcoords='offset points', ha='center', color=color) plt.legend() plt.tight_layout() # Save plot buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', dpi=300) buf.seek(0) plot_image = Image.open(buf) plt.close() # Calculate final probabilities with torch.no_grad(): output = model(X_tensor) probs = torch.softmax(output, dim=1) pred_class = 1 if probs[0][1] > probs[0][0] else 0 pred_label = 'human' if pred_class == 1 else 'non-human' # Generate results text results_text += f"""Sequence: {header} Prediction: {pred_label} Confidence: {float(max(probs[0])):0.4f} Human probability: {float(probs[0][1]):0.4f} Non-human probability: {float(probs[0][0]):0.4f} Most influential k-mers (ranked by importance):""" for kmer in important_kmers: direction = "human" if kmer['importance'] > 0 else "non-human" results_text += f"\n {kmer['kmer']}: " results_text += f"pushes toward {direction} (impact={abs(kmer['importance']):.4f}), " results_text += f"occurrence={kmer['frequency']*100:.2f}% of sequence " if kmer['scaled'] > 0: results_text += f"(appears {abs(kmer['scaled']):.2f}σ more than average)" else: results_text += f"(appears {abs(kmer['scaled']):.2f}σ less than average)" except Exception as e: return f"Error processing sequences: {str(e)}", None return results_text, plot_image iface = gr.Interface( fn=predict, inputs=gr.File(label="Upload FASTA file", type="binary"), outputs=[gr.Textbox(label="Results"), gr.Image(label="SHAP Waterfall Plot")], title="Virus Host Classifier" ) if __name__ == "__main__": iface.launch(share=True)