File size: 14,572 Bytes
7de3018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import re
import string
import numpy as np
from collections import Counter
from typing import List, Set, Tuple, Union
from scipy.optimize import linear_sum_assignment
from word2number.w2n import word_to_num
import json

# copy from https://github.com/allenai/multimodalqa/blob/master/baselines/evaluate.py


ALL_QUESTION_TYPES = [
    'TextQ',
    'TableQ',
    'ImageQ',
    'ImageListQ',
    'Compose(TableQ,ImageListQ)',
    'Compose(TextQ,ImageListQ)',
    'Compose(ImageQ,TableQ)',
    'Compose(ImageQ,TextQ)',
    'Compose(TextQ,TableQ)',
    'Compose(TableQ,TextQ)',
    'Intersect(TableQ,TextQ)',
    'Intersect(ImageListQ,TableQ)',
    'Intersect(ImageListQ,TextQ)',
    'Compare(Compose(TableQ,ImageQ),TableQ)',
    'Compare(Compose(TableQ,ImageQ),Compose(TableQ,TextQ))',
    'Compare(TableQ,Compose(TableQ,TextQ))',
]

TEXT_SINGLE_HOP_QUESTION_TYPES = [
    'TextQ',
]
TEXT_AS_FIRST_HOP_QUESTION_TYPES = [
    'Compare(TableQ,Compose(TableQ,TextQ))',
    'Compose(ImageQ,TextQ)',
    'Compose(TableQ,TextQ)',
    'Intersect(TableQ,TextQ)',
    'Intersect(ImageListQ,TextQ)',
]
TEXT_AS_SECOND_HOP_QUESTION_TYPES = [
    'Compare(Compose(TableQ,ImageQ),Compose(TableQ,TextQ))',
    'Compose(TextQ,ImageListQ)',
    'Compose(TextQ,TableQ)',
]

TABLE_SINGLE_HOP_QUESTION_TYPES = [
    "TableQ"
]
TABLE_AS_FIRST_HOP_QUESTION_TYPES = [
    'Compose(ImageQ,TableQ)',
    'Compose(TextQ,TableQ)',
]
TABLE_AS_SECOND_HOP_QUESTION_TYPES = [
    'Compare(Compose(TableQ,ImageQ),TableQ)',
    'Compare(TableQ,Compose(TableQ,TextQ))',
    'Compose(TableQ,ImageListQ)',
    'Compose(TableQ,TextQ)',
    'Intersect(ImageListQ,TableQ)',
    'Intersect(TableQ,TextQ)',
]

IMAGE_SINGLE_HOP_QUESTION_TYPES = [
    'ImageQ',
    'ImageListQ'
]
IMAGE_AS_FIRST_HOP_QUESTION_TYPES = [
    'Compare(Compose(TableQ,ImageQ),Compose(TableQ,TextQ))',
    'Compare(Compose(TableQ,ImageQ),TableQ)',
    'Compose(TableQ,ImageListQ)',
    'Compose(TextQ,ImageListQ)',
    'Intersect(ImageListQ,TableQ)',
]
IMAGE_AS_SECOND_HOP_QUESTION_TYPES = [
    'Compose(ImageQ,TableQ)',
    'Compose(ImageQ,TextQ)',
    'Intersect(ImageListQ,TextQ)',
]


# every question should be answered either as a single hop question, or two-hop question
assert set(TEXT_SINGLE_HOP_QUESTION_TYPES + TEXT_AS_SECOND_HOP_QUESTION_TYPES
           + TABLE_SINGLE_HOP_QUESTION_TYPES + TABLE_AS_SECOND_HOP_QUESTION_TYPES
           + IMAGE_SINGLE_HOP_QUESTION_TYPES + IMAGE_AS_SECOND_HOP_QUESTION_TYPES) == set(ALL_QUESTION_TYPES)
assert len(set(TEXT_SINGLE_HOP_QUESTION_TYPES) & set(TEXT_AS_SECOND_HOP_QUESTION_TYPES)) == 0
assert len(set(TABLE_SINGLE_HOP_QUESTION_TYPES) & set(TABLE_AS_SECOND_HOP_QUESTION_TYPES)) == 0
assert len(set(IMAGE_SINGLE_HOP_QUESTION_TYPES) & set(IMAGE_AS_SECOND_HOP_QUESTION_TYPES)) == 0

SINGLE_HOP_QUESTION_TYPES = TEXT_SINGLE_HOP_QUESTION_TYPES \
                            + TABLE_SINGLE_HOP_QUESTION_TYPES \
                            + IMAGE_SINGLE_HOP_QUESTION_TYPES
MULTI_HOP_QUESTION_TYPES = TEXT_AS_SECOND_HOP_QUESTION_TYPES \
                           + TABLE_AS_SECOND_HOP_QUESTION_TYPES + \
                           IMAGE_AS_SECOND_HOP_QUESTION_TYPES
# no duplicated multi-hop question types
assert len(MULTI_HOP_QUESTION_TYPES) == len(set(MULTI_HOP_QUESTION_TYPES))
# no duplication for the first hop
assert set(TEXT_AS_FIRST_HOP_QUESTION_TYPES + TABLE_AS_FIRST_HOP_QUESTION_TYPES + IMAGE_AS_FIRST_HOP_QUESTION_TYPES) \
       == set(MULTI_HOP_QUESTION_TYPES)
# single + multi = all
assert set(SINGLE_HOP_QUESTION_TYPES + MULTI_HOP_QUESTION_TYPES) == set(ALL_QUESTION_TYPES)


def process_question_for_implicit_decomp(question, question_type, hop=0, bridge_entity='', sep_token='[SEP]'):
    if isinstance(bridge_entity, list) or isinstance(bridge_entity, set):
        bridge_entity = "; ".join(bridge_entity)
    return (
        f'{question_type} {sep_token} '
        f'HOP={hop} {sep_token} '
        f'{bridge_entity} {sep_token} '
        f'{question}')


def extract_numbers_from_str(s):
    numbers = []
    for token in s.split():
        try:
            num = int(token.replace(",", ""))
        except:
            try:
                num = float(token)
            except:
                num = None
        if num:
            numbers.append(num)
    return numbers


def read_jsonl(filename):
    with open(filename, 'r') as f:
        data = [json.loads(l.strip()) for l in f.readlines()]
    return data

# From here through _match_numbers_if_present was originally copied from the evaluation code of DROP dataset:
# https://github.com/allenai/allennlp-reading-comprehension/blob/master/allennlp_rc/eval/drop_eval.py

def _remove_articles(text: str) -> str:
    regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
    return re.sub(regex, " ", text)


def _white_space_fix(text: str) -> str:
    return " ".join(text.split())


EXCLUDE = set(string.punctuation)


def _remove_punc(text: str) -> str:
    if not _is_number(text):
        return "".join(ch for ch in text if ch not in EXCLUDE)
    else:
        return text


def _lower(text: str) -> str:
    return text.lower()


def _tokenize(text: str) -> List[str]:
    return re.split(" |-", text)


def _normalize_answer(text: str) -> str:
    """Lower text and remove punctuation, articles and extra whitespace."""

    parts = [
        _white_space_fix(_remove_articles(_normalize_number(_remove_punc(_lower(token)))))
        for token in _tokenize(text)
    ]
    parts = [part for part in parts if part.strip()]
    normalized = " ".join(parts).strip()
    return normalized


def _is_number(text: str) -> bool:
    try:
        float(text)
        return True
    except ValueError:
        return False


def _is_word_number(text: str) -> bool:
    try:
        word_to_num(text)
        return True
    except ValueError:
        return False


def _normalize_number(text: str) -> str:
    if _is_number(text):
        return str(float(text))
    #TODO: this is not included in the original drop evaluation script, we need to have our own in the end anyways.
    elif _is_word_number(text):
        return str(float(word_to_num(text)))
    else:
        return text


def _answer_to_bags(
    answer: Union[str, List[str], Tuple[str, ...]]
) -> Tuple[List[str], List[Set[str]]]:
    if isinstance(answer, (list, tuple)):
        raw_spans = answer
    else:
        raw_spans = [answer]
    normalized_spans: List[str] = []
    token_bags = []
    for raw_span in raw_spans:
        normalized_span = _normalize_answer(raw_span)
        normalized_spans.append(normalized_span)
        token_bags.append(set(normalized_span.split()))
    return normalized_spans, token_bags


def _align_bags(predicted: List[Set[str]], gold: List[Set[str]]) -> List[float]:
    """
    Takes gold and predicted answer sets and first finds the optimal 1-1 alignment
    between them and gets maximum metric values over all the answers.
    """
    scores = np.zeros([len(gold), len(predicted)])
    for gold_index, gold_item in enumerate(gold):
        for pred_index, pred_item in enumerate(predicted):
            if _match_numbers_if_present(gold_item, pred_item):
                scores[gold_index, pred_index] = _compute_f1(pred_item, gold_item)
    row_ind, col_ind = linear_sum_assignment(-scores)

    max_scores = np.zeros([max(len(gold), len(predicted))])
    for row, column in zip(row_ind, col_ind):
        max_scores[row] = max(max_scores[row], scores[row, column])
    return max_scores


def _compute_f1(predicted_bag: Set[str], gold_bag: Set[str]) -> float:
    intersection = len(gold_bag.intersection(predicted_bag))
    if not predicted_bag:
        precision = 1.0
    else:
        precision = intersection / float(len(predicted_bag))
    if not gold_bag:
        recall = 1.0
    else:
        recall = intersection / float(len(gold_bag))
    f1 = (
        (2 * precision * recall) / (precision + recall)
        if not (precision == 0.0 and recall == 0.0)
        else 0.0
    )
    return f1


def _match_numbers_if_present(gold_bag: Set[str], predicted_bag: Set[str]) -> bool:
    gold_numbers = set()
    predicted_numbers = set()
    for word in gold_bag:
        if _is_number(word):
            gold_numbers.add(word)
    for word in predicted_bag:
        if _is_number(word):
            predicted_numbers.add(word)
    if (not gold_numbers) or gold_numbers.intersection(predicted_numbers):
        return True
    return False



def acc(predicted, gold):
    predicted_bags = _answer_to_bags(predicted)
    gold_bags = _answer_to_bags(gold)
    if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len(gold_bags[0]):
        return 1.0
    else:
        return 0.0


def f1(predicted, gold):
    predicted_bags = _answer_to_bags(predicted)
    gold_bags = _answer_to_bags(gold)
    f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1])
    f1 = np.mean(f1_per_bag)
    f1 = round(f1, 2)
    return f1


def metric_max_over_ground_truths(metric_fn, prediction, gold_answers):
    scores_for_ground_truths = []
    for gold_answer in gold_answers:
        score = metric_fn(prediction, gold_answer)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def evaluate_predictions(predictions, gold_answers, example_types=None):
    """To support multiple gold annotations, `gold_answers` should be a list,
    with each item (either a string or a list) corresponding to one valid reference answer."""
    instance_eval_results = {}
    instance_eval_results_by_types = {}
    eval_funcs = {
        "acc": acc,
        "f1": f1
    }
    for qas_id in gold_answers:
        ref_answers = gold_answers[qas_id]
        if qas_id not in predictions:
            print(f"Missing prediction for question {qas_id}, and all scores for this question are set to zero")
            instance_eval_results[qas_id] = {
                metric: 0.0 for metric in eval_funcs.keys()
            }
        else:
            pred_answer = predictions[qas_id]
            instance_eval_results[qas_id] = {
                metric: metric_max_over_ground_truths(
                    func, pred_answer, ref_answers
                ) for metric, func in eval_funcs.items()
            }
        if example_types is not None:
            example_type = example_types[qas_id]
            if example_type not in instance_eval_results_by_types:
                instance_eval_results_by_types[example_type] = {}
            instance_eval_results_by_types[example_type][qas_id] = instance_eval_results[qas_id]

    eval_scores = {metric: np.mean([result[metric] for result in instance_eval_results.values()])
                   for metric in eval_funcs.keys()}

    if example_types is not None:
        eval_scores_by_types = {}
        for example_type, type_instance_eval_results in instance_eval_results_by_types.items():
            eval_scores_by_types[example_type] = {
                metric: np.mean([result[metric] for result in type_instance_eval_results.values()]) for metric in eval_funcs.keys()
            }
        return eval_scores, instance_eval_results, eval_scores_by_types
    else:
        return eval_scores, instance_eval_results


def evaluate_prediction_file(prediction_path, gold_path):
    predicted_answers = json.load(open(prediction_path, encoding="utf-8"))
    examples = read_jsonl(gold_path)
    gold_answers, answer_modalities, hop_types, question_types = {}, {}, {}, {}
    for example in examples:
        qid = example["qid"]
        # Currently we only have one ground truth answer.
        # Even if there are multiple entries in example["answers"], the whole list should be regarded as one ref answer.
        # However, our script supports evaluation with multiple ref answers.
        # So, we will use an outer bracket here to pretend we have a list of ref answers.
        gold_answer = [str(item["answer"]) for item in example["answers"]]
        gold_answers[qid] = [gold_answer]
        answer_modality = set([item["modality"] for item in example["answers"]])
        assert len(answer_modality) == 1
        answer_modalities[qid] = answer_modality.pop()
        question_types[qid] = example["metadata"]["type"]
        hop_types[qid] = "Multi-hop" if example["metadata"]["type"] in MULTI_HOP_QUESTION_TYPES else "Single-hop"

    eval_scores, instance_eval_results = evaluate_predictions(predicted_answers, gold_answers)
    print("\n\nOverall result with different metrics: ")
    for metric, value in eval_scores.items():
        print(f"{metric}: {value}")

    modality_counts = Counter(answer_modalities.values())
    _, _, eval_scores_by_modalities = \
        evaluate_predictions(predicted_answers, gold_answers, answer_modalities)
    print("\n\nEval results for different modalities:")
    for answer_modality in sorted(eval_scores_by_modalities.keys()):
        result = eval_scores_by_modalities[answer_modality]
        print(f"{answer_modality}")
        print(f"# of examples: {modality_counts[answer_modality]}")
        for metric, value in result.items():
            print(f"{metric}: {value}")

    hop_type_counts = Counter(hop_types.values())
    _, _, eval_scores_by_hop_types = evaluate_predictions(predicted_answers, gold_answers, hop_types)
    print("\n\nType\tCount\tEM\tF1")
    for hop_type in sorted(eval_scores_by_hop_types.keys()):
        result = eval_scores_by_hop_types[hop_type]
        print(f"{hop_type}\t{hop_type_counts[hop_type]}\t{result['acc']}\t{result['f1']}")

    question_type_counts = Counter(question_types.values())
    _, _, eval_scores_by_qtypes = evaluate_predictions(predicted_answers, gold_answers, question_types)
    print("\n\nType\tCount\tEM\tF1")
    for question_type in sorted(eval_scores_by_qtypes.keys()):
        result = eval_scores_by_qtypes[question_type]
        print(f"{question_type}\t{question_type_counts[question_type]}\t{result['acc']}\t{result['f1']}")
    return eval_scores


class EvaluateTool(object):

  def __init__(self, args):
    self.args = args

  def evaluate(self, preds, golds, section):
    summary = {}

    gold_answers, predicted_answers = {}, {}
    for pred, gold in zip(preds, golds):
      qid = gold["id"]
      gold_answer = [item.strip() for item in gold["answer_text"].split("|")]
      gold_answers[qid] = [gold_answer]
      predicted_answers[qid] = [item.strip() for item in pred.split("|")]

    eval_scores, instance_eval_results = evaluate_predictions(predicted_answers, gold_answers)

    for metric, value in eval_scores.items():
        summary[metric] = value
    return summary