Binder / generation /generator.py
tianbaoxiexxx's picture
Fix security issue pointed by Ivan
b15814b
"""
Generate nsql and questions.
"""
from typing import Dict, List, Union, Tuple
import openai
import time
from generation.prompt import PromptBuilder
class Generator(object):
"""
Codex generation wrapper.
"""
def __init__(self, args, keys=None):
self.args = args
self.__keys = keys
self.current_key_id = 0
# if the args provided, will initialize with the prompt builder for full usage
self.prompt_builder = PromptBuilder(args) if args else None
def prompt_row_truncate(
self,
prompt: str,
num_rows_to_remain: int,
table_end_token: str = '*/',
):
"""
Fit prompt into max token limits by row truncation.
"""
table_end_pos = prompt.rfind(table_end_token)
assert table_end_pos != -1
prompt_part1, prompt_part2 = prompt[:table_end_pos], prompt[table_end_pos:]
prompt_part1_lines = prompt_part1.split('\n')[::-1]
trunc_line_index = None
for idx, line in enumerate(prompt_part1_lines):
if '\t' not in line:
continue
row_id = int(line.split('\t')[0])
if row_id <= num_rows_to_remain:
trunc_line_index = idx
break
new_prompt_part1 = '\n'.join(prompt_part1_lines[trunc_line_index:][::-1])
prompt = new_prompt_part1 + '\n' + prompt_part2
return prompt
def build_few_shot_prompt_from_file(
self,
file_path: str,
n_shots: int
):
"""
Build few-shot prompt for generation from file.
"""
with open(file_path, 'r') as f:
lines = f.readlines()
few_shot_prompt_list = []
one_shot_prompt = ''
last_line = None
for line in lines:
if line == '\n' and last_line == '\n':
few_shot_prompt_list.append(one_shot_prompt)
one_shot_prompt = ''
else:
one_shot_prompt += line
last_line = line
few_shot_prompt_list.append(one_shot_prompt)
few_shot_prompt_list = few_shot_prompt_list[:n_shots]
few_shot_prompt_list[-1] = few_shot_prompt_list[
-1].strip() # It is essential for prompting to remove extra '\n'
few_shot_prompt = '\n'.join(few_shot_prompt_list)
return few_shot_prompt
def build_generate_prompt(
self,
data_item: Dict,
generate_type: Tuple
):
"""
Build the generate prompt
"""
return self.prompt_builder.build_generate_prompt(
**data_item,
generate_type=generate_type
)
def generate_one_pass(
self,
prompts: List[Tuple],
verbose: bool = False
):
"""
Generate one pass with codex according to the generation phase.
"""
result_idx_to_eid = []
for p in prompts:
result_idx_to_eid.extend([p[0]] * self.args.sampling_n)
prompts = [p[1] for p in prompts]
start_time = time.time()
result = self._call_codex_api(
engine=self.args.engine,
prompt=prompts,
max_tokens=self.args.max_generation_tokens,
temperature=self.args.temperature,
top_p=self.args.top_p,
n=self.args.sampling_n,
stop=self.args.stop_tokens
)
print(f'Openai api one inference time: {time.time() - start_time}')
if verbose:
print('\n', '*' * 20, 'Codex API Call', '*' * 20)
for prompt in prompts:
print(prompt)
print('\n')
print('- - - - - - - - - - ->>')
# parse api results
response_dict = dict()
for idx, g in enumerate(result['choices']):
try:
text = g['text']
logprob = sum(g['logprobs']['token_logprobs'])
eid = result_idx_to_eid[idx]
eid_pairs = response_dict.get(eid, None)
if eid_pairs is None:
eid_pairs = []
response_dict[eid] = eid_pairs
eid_pairs.append((text, logprob))
if verbose:
print(text)
except ValueError as e:
if verbose:
print('----------- Error Msg--------')
print(e)
print(text)
print('-----------------------------')
pass
return response_dict
def _call_codex_api(
self,
engine: str,
prompt: Union[str, List],
max_tokens,
temperature: float,
top_p: float,
n: int,
stop: List[str]
):
start_time = time.time()
result = None
while result is None:
try:
key = self.keys[self.current_key_id]
self.current_key_id = (self.current_key_id + 1) % len(self.keys)
result = openai.Completion.create(
engine=engine,
prompt=prompt,
api_key=key,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
n=n,
stop=stop,
logprobs=1
)
print('Openai api inference time:', time.time() - start_time)
return result
except Exception as e:
print(e, 'Retry.')
time.sleep(5)