import json import os import pandas as pd import streamlit as st import argparse import traceback from typing import Dict import requests from utils.utils import load_data_split from nsql.database import NeuralDB from nsql.nsql_exec import NSQLExecutor from nsql.nsql_exec_python import NPythonExecutor from generation.generator import Generator import time ROOT_DIR = os.path.join(os.path.dirname(__file__), "./") EXAMPLE_TABLES = { "Estonia men's national volleyball team": (558, "what are the total number of players from france?"), "Highest mountain peaks of California": (5, "which is the lowest mountain?"), "2010–11 UAB Blazers men's basketball team": (1, "how many players come from alabama?"), "1999 European Tour": (209, "how many consecutive times was south africa the host country?"), "Nissan SR20DET": (438, "which car is the only one with more than 230 hp?"), } @st.cache def load_data(): return load_data_split("missing_squall", "validation") @st.cache def get_key(): # print the public IP of the demo machine ip = requests.get('https://checkip.amazonaws.com').text.strip() print(ip) URL = "http://54.242.37.195:20217/api/predict" # The springboard machine we built to protect the key, 20217 is the birthday of Tianbao's girlfriend # we will only let the demo machine have the access to the keys one_key = requests.post(url=URL, json={"data": "Hi, binder server. Give me a key!"}).json()['data'][0] return one_key def read_markdown(path): with open(path, "r") as f: output = f.read() st.markdown(output, unsafe_allow_html=True) def generate_binder_program(_args, _generator, _data_item): n_shots = _args.n_shots few_shot_prompt = _generator.build_few_shot_prompt_from_file( file_path=_args.prompt_file, n_shots=n_shots ) generate_prompt = _generator.build_generate_prompt( data_item=_data_item, generate_type=(_args.generate_type,) ) prompt = few_shot_prompt + "\n\n" + generate_prompt # Ensure the input length fit Codex max input tokens by shrinking the n_shots max_prompt_tokens = _args.max_api_total_tokens - _args.max_generation_tokens from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=os.path.join(ROOT_DIR, "utils", "gpt2")) while len(tokenizer.tokenize(prompt)) >= max_prompt_tokens: # TODO: Add shrink rows n_shots -= 1 assert n_shots >= 0 few_shot_prompt = _generator.build_few_shot_prompt_from_file( file_path=_args.prompt_file, n_shots=n_shots ) prompt = few_shot_prompt + "\n\n" + generate_prompt response_dict = _generator.generate_one_pass( prompts=[("0", prompt)], # the "0" is the place taker, take effect only when there are multi threads verbose=_args.verbose ) print(response_dict) return response_dict["0"][0][0] # Set up parser = argparse.ArgumentParser() parser.add_argument('--prompt_file', type=str, default='templates/prompts/prompt_wikitq_v3.txt') # Binder program generation options parser.add_argument('--prompt_style', type=str, default='create_table_select_3_full_table', choices=['create_table_select_3_full_table', 'create_table_select_full_table', 'create_table_select_3', 'create_table', 'create_table_select_3_full_table_w_all_passage_image', 'create_table_select_3_full_table_w_gold_passage_image', 'no_table']) parser.add_argument('--generate_type', type=str, default='nsql', choices=['nsql', 'sql', 'answer', 'npython', 'python']) parser.add_argument('--n_shots', type=int, default=14) parser.add_argument('--seed', type=int, default=42) # Codex options # todo: Allow adjusting Codex parameters parser.add_argument('--engine', type=str, default="code-davinci-002") parser.add_argument('--max_generation_tokens', type=int, default=512) parser.add_argument('--max_api_total_tokens', type=int, default=8001) parser.add_argument('--temperature', type=float, default=0.) parser.add_argument('--sampling_n', type=int, default=1) parser.add_argument('--top_p', type=float, default=1.0) parser.add_argument('--stop_tokens', type=str, default='\n\n', help='Split stop tokens by ||') parser.add_argument('--qa_retrieve_pool_file', type=str, default='templates/qa_retrieve_pool.json') # debug options parser.add_argument('-v', '--verbose', action='store_false') args = parser.parse_args() keys = [get_key()] # The title st.markdown("# Binder Playground") # Summary about Binder read_markdown('resources/summary.md') # Introduction of Binder # todo: Write Binder introduction here # read_markdown('resources/introduction.md') st.image('resources/intro.png') # Upload tables/Switch tables st.markdown('### Try Binder!') col1, _ = st.columns(2) with col1: selected_table_title = st.selectbox( "Select an example table", ( "Estonia men's national volleyball team", "Highest mountain peaks of California", "2010–11 UAB Blazers men's basketball team", "1999 European Tour", "Nissan SR20DET", ) ) # Here we just use ourselves' data_items = load_data() data_item = data_items[EXAMPLE_TABLES[selected_table_title][0]] table = data_item['table'] header, rows, title = table['header'], table['rows'], table['page_title'] db = NeuralDB( [{"title": title, "table": table}]) # todo: try to cache this db instead of re-creating it again and again. df = db.get_table_df() st.markdown("Title: {}".format(title)) st.dataframe(df) # Let user input the question question = st.text_input( "Ask a question about the table:", value=EXAMPLE_TABLES[selected_table_title][1] ) with col1: # todo: Why selecting language will flush the page? selected_language = st.selectbox( "Select a programming language", ("SQL", "Python"), ) if selected_language == 'SQL': args.prompt_file = 'templates/prompts/prompt_wikitq_v3.txt' args.generate_type = 'nsql' elif selected_language == 'Python': args.prompt_file = 'templates/prompts/prompt_wikitq_python_simplified_v4.txt' args.generate_type = 'npython' else: raise ValueError(f'{selected_language} language is not supported.') button = st.button("Generate program") if not button: st.stop() # Generate Binder Program generator = Generator(args, keys=keys) with st.spinner("Generating program ..."): binder_program = generate_binder_program(args, generator, {"question": question, "table": db.get_table_df(), "title": title}) # Do execution st.markdown("#### Binder program") if selected_language == 'SQL': with st.container(): st.write(binder_program) executor = NSQLExecutor(args, keys=keys) elif selected_language == 'Python': st.code(binder_program, language='python') executor = NPythonExecutor(args, keys=keys) db = db.get_table_df() else: raise ValueError(f'{selected_language} language is not supported.') try: os.makedirs('tmp_for_vis/', exist_ok=True) with st.spinner("Executing program ..."): exec_answer = executor.nsql_exec(binder_program, db) # todo: Make it more pretty! # todo: Do we need vis for Python? if selected_language == 'SQL': with open("tmp_for_vis/tmp_for_vis_steps.txt", "r") as f: steps = json.load(f) st.markdown("#### Steps & Intermediate results") for i, step in enumerate(steps): st.markdown(step) st.text("↓") with st.spinner('...'): time.sleep(1) with open("tmp_for_vis/result_step_{}.txt".format(i), "r") as f: result_in_this_step = json.load(f) if isinstance(result_in_this_step, Dict): st.dataframe(pd.DataFrame(pd.DataFrame(result_in_this_step["rows"], columns=result_in_this_step["header"]))) else: st.markdown(result_in_this_step) st.text("↓") elif selected_language == 'Python': pass if isinstance(exec_answer, list) and len(exec_answer) == 1: exec_answer = exec_answer[0] st.markdown(f'Execution answer: {exec_answer}') except Exception as e: traceback.print_exc()