Spaces:
Sleeping
Sleeping
File size: 31,681 Bytes
20aea5e e09771a 20aea5e 958afc7 20aea5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
import warnings
import iml
import numpy as np
from iml import Instance, Model
from iml.datatypes import DenseData
from iml.explanations import AdditiveExplanation
from iml.links import IdentityLink
from scipy.stats import gaussian_kde
import matplotlib
try:
import matplotlib.pyplot as pl
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.ticker import MaxNLocator
cdict1 = {
'red': ((0.0, 0.11764705882352941, 0.11764705882352941),
(1.0, 0.9607843137254902, 0.9607843137254902)),
'green': ((0.0, 0.5333333333333333, 0.5333333333333333),
(1.0, 0.15294117647058825, 0.15294117647058825)),
'blue': ((0.0, 0.8980392156862745, 0.8980392156862745),
(1.0, 0.3411764705882353, 0.3411764705882353)),
'alpha': ((0.0, 1, 1),
(0.5, 0.3, 0.3),
(1.0, 1, 1))
} # #1E88E5 -> #ff0052
red_blue = LinearSegmentedColormap('RedBlue', cdict1)
cdict1 = {
'red': ((0.0, 0.11764705882352941, 0.11764705882352941),
(1.0, 0.9607843137254902, 0.9607843137254902)),
'green': ((0.0, 0.5333333333333333, 0.5333333333333333),
(1.0, 0.15294117647058825, 0.15294117647058825)),
'blue': ((0.0, 0.8980392156862745, 0.8980392156862745),
(1.0, 0.3411764705882353, 0.3411764705882353)),
'alpha': ((0.0, 1, 1),
(0.5, 1, 1),
(1.0, 1, 1))
} # #1E88E5 -> #ff0052
red_blue_solid = LinearSegmentedColormap('RedBlue', cdict1)
except ImportError:
pass
labels = {
'MAIN_EFFECT': "SHAP main effect value for\n%s",
'INTERACTION_VALUE': "SHAP interaction value",
'INTERACTION_EFFECT': "SHAP interaction value for\n%s and %s",
'VALUE': "SHAP value (impact on model output)",
'VALUE_FOR': "SHAP value for\n%s",
'PLOT_FOR': "SHAP plot for %s",
'FEATURE': "Feature %s",
'FEATURE_VALUE': "Feature value",
'FEATURE_VALUE_LOW': "Low",
'FEATURE_VALUE_HIGH': "High",
'JOINT_VALUE': "Joint SHAP value"
}
def shap_summary_plot(shap_values, features=None, feature_names=None, max_display=None, plot_type="dot",
color=None, axis_color="#333333", title=None, alpha=1, show=True, sort=True,
color_bar=True, auto_size_plot=True, layered_violin_max_num_bins=20):
"""Create a SHAP summary plot, colored by feature values when they are provided.
Parameters
----------
shap_values : numpy.array
Matrix of SHAP values (# samples x # features)
features : numpy.array or pandas.DataFrame or list
Matrix of feature values (# samples x # features) or a feature_names list as shorthand
feature_names : list
Names of the features (length # features)
max_display : int
How many top features to include in the plot (default is 20, or 7 for interaction plots)
plot_type : "dot" (default) or "violin"
What type of summary plot to produce
"""
assert len(shap_values.shape) != 1, "Summary plots need a matrix of shap_values, not a vector."
# default color:
if color is None:
color = "coolwarm" if plot_type == 'layered_violin' else "#ff0052"
# convert from a DataFrame or other types
if str(type(features)) == "<class 'pandas.core.frame.DataFrame'>":
if feature_names is None:
feature_names = features.columns
features = features.values
elif str(type(features)) == "<class 'list'>":
if feature_names is None:
feature_names = features
features = None
elif (features is not None) and len(features.shape) == 1 and feature_names is None:
feature_names = features
features = None
if feature_names is None:
feature_names = [labels['FEATURE'] % str(i) for i in range(shap_values.shape[1] - 1)]
mpl_fig = pl.figure(figsize=(1.5 * max_display + 1, 1 * max_display + 1))
# plotting SHAP interaction values
if len(shap_values.shape) == 3:
if max_display is None:
max_display = 7
else:
max_display = min(len(feature_names), max_display)
sort_inds = np.argsort(-np.abs(shap_values[:, :-1, :-1].sum(1)).sum(0))
# get plotting limits
delta = 1.0 / (shap_values.shape[1] ** 2)
slow = np.nanpercentile(shap_values, delta)
shigh = np.nanpercentile(shap_values, 100 - delta)
v = max(abs(slow), abs(shigh))
slow = -0.2
shigh = 0.2
# mpl_fig = pl.figure(figsize=(1.5 * max_display + 1, 1 * max_display + 1))
ax = mpl_fig.subplot(1, max_display, 1)
proj_shap_values = shap_values[:, sort_inds[0], np.hstack((sort_inds, len(sort_inds)))]
proj_shap_values[:, 1:] *= 2 # because off diag effects are split in half
shap_summary_plot(
proj_shap_values, features[:, sort_inds],
feature_names=feature_names[sort_inds],
sort=False, show=False, color_bar=False,
auto_size_plot=False,
max_display=max_display
)
pl.xlim((slow, shigh))
pl.xlabel("")
title_length_limit = 11
pl.title(shorten_text(feature_names[sort_inds[0]], title_length_limit))
for i in range(1, max_display):
ind = sort_inds[i]
pl.subplot(1, max_display, i + 1)
proj_shap_values = shap_values[:, ind, np.hstack((sort_inds, len(sort_inds)))]
proj_shap_values *= 2
proj_shap_values[:, i] /= 2 # because only off diag effects are split in half
shap_summary_plot(
proj_shap_values, features[:, sort_inds],
sort=False,
feature_names=df_shap.columns, #["" for i in range(features.shape[1])],
show=False,
color_bar=False,
auto_size_plot=False,
max_display=max_display
)
pl.xlim((slow, shigh))
pl.xlabel("")
if i == max_display // 2:
pl.xlabel(labels['INTERACTION_VALUE'])
pl.title(shorten_text(feature_names[ind], title_length_limit))
pl.tight_layout(pad=0, w_pad=0, h_pad=0.0)
pl.subplots_adjust(hspace=0, wspace=0.1)
# if show:
# # pl.show()
return mpl_fig
if max_display is None:
max_display = 20
if sort:
# order features by the sum of their effect magnitudes
feature_order = np.argsort(np.sum(np.abs(shap_values), axis=0)[:-1])
feature_order = feature_order[-min(max_display, len(feature_order)):]
else:
feature_order = np.flip(np.arange(min(max_display, shap_values.shape[1] - 1)), 0)
row_height = 0.4
if auto_size_plot:
pl.gcf().set_size_inches(8, len(feature_order) * row_height + 1.5)
pl.axvline(x=0, color="#999999", zorder=-1)
if plot_type == "dot":
for pos, i in enumerate(feature_order):
pl.axhline(y=pos, color="#cccccc", lw=0.5, dashes=(1, 5), zorder=-1)
shaps = shap_values[:, i]
values = None if features is None else features[:, i]
inds = np.arange(len(shaps))
np.random.shuffle(inds)
if values is not None:
values = values[inds]
shaps = shaps[inds]
colored_feature = True
try:
values = np.array(values, dtype=np.float64) # make sure this can be numeric
except:
colored_feature = False
N = len(shaps)
# hspacing = (np.max(shaps) - np.min(shaps)) / 200
# curr_bin = []
nbins = 100
quant = np.round(nbins * (shaps - np.min(shaps)) / (np.max(shaps) - np.min(shaps) + 1e-8))
inds = np.argsort(quant + np.random.randn(N) * 1e-6)
layer = 0
last_bin = -1
ys = np.zeros(N)
for ind in inds:
if quant[ind] != last_bin:
layer = 0
ys[ind] = np.ceil(layer / 2) * ((layer % 2) * 2 - 1)
layer += 1
last_bin = quant[ind]
ys *= 0.9 * (row_height / np.max(ys + 1))
if features is not None and colored_feature:
# trim the color range, but prevent the color range from collapsing
vmin = np.nanpercentile(values, 5)
vmax = np.nanpercentile(values, 95)
if vmin == vmax:
vmin = np.nanpercentile(values, 1)
vmax = np.nanpercentile(values, 99)
if vmin == vmax:
vmin = np.min(values)
vmax = np.max(values)
assert features.shape[0] == len(shaps), "Feature and SHAP matrices must have the same number of rows!"
nan_mask = np.isnan(values)
pl.scatter(shaps[nan_mask], pos + ys[nan_mask], color="#777777", vmin=vmin,
vmax=vmax, s=16, alpha=alpha, linewidth=0,
zorder=3, rasterized=len(shaps) > 500)
pl.scatter(shaps[np.invert(nan_mask)], pos + ys[np.invert(nan_mask)],
cmap=red_blue, vmin=vmin, vmax=vmax, s=16,
c=values[np.invert(nan_mask)], alpha=alpha, linewidth=0,
zorder=3, rasterized=len(shaps) > 500)
else:
pl.scatter(shaps, pos + ys, s=16, alpha=alpha, linewidth=0, zorder=3,
color=color if colored_feature else "#777777", rasterized=len(shaps) > 500)
elif plot_type == "violin":
for pos, i in enumerate(feature_order):
pl.axhline(y=pos, color="#cccccc", lw=0.5, dashes=(1, 5), zorder=-1)
if features is not None:
global_low = np.nanpercentile(shap_values[:, :len(feature_names)].flatten(), 1)
global_high = np.nanpercentile(shap_values[:, :len(feature_names)].flatten(), 99)
for pos, i in enumerate(feature_order):
shaps = shap_values[:, i]
shap_min, shap_max = np.min(shaps), np.max(shaps)
rng = shap_max - shap_min
xs = np.linspace(np.min(shaps) - rng * 0.2, np.max(shaps) + rng * 0.2, 100)
if np.std(shaps) < (global_high - global_low) / 100:
ds = gaussian_kde(shaps + np.random.randn(len(shaps)) * (global_high - global_low) / 100)(xs)
else:
ds = gaussian_kde(shaps)(xs)
ds /= np.max(ds) * 3
values = features[:, i]
window_size = max(10, len(values) // 20)
smooth_values = np.zeros(len(xs) - 1)
sort_inds = np.argsort(shaps)
trailing_pos = 0
leading_pos = 0
running_sum = 0
back_fill = 0
for j in range(len(xs) - 1):
while leading_pos < len(shaps) and xs[j] >= shaps[sort_inds[leading_pos]]:
running_sum += values[sort_inds[leading_pos]]
leading_pos += 1
if leading_pos - trailing_pos > 20:
running_sum -= values[sort_inds[trailing_pos]]
trailing_pos += 1
if leading_pos - trailing_pos > 0:
smooth_values[j] = running_sum / (leading_pos - trailing_pos)
for k in range(back_fill):
smooth_values[j - k - 1] = smooth_values[j]
else:
back_fill += 1
vmin = np.nanpercentile(values, 5)
vmax = np.nanpercentile(values, 95)
if vmin == vmax:
vmin = np.nanpercentile(values, 1)
vmax = np.nanpercentile(values, 99)
if vmin == vmax:
vmin = np.min(values)
vmax = np.max(values)
pl.scatter(shaps, np.ones(shap_values.shape[0]) * pos, s=9, cmap=red_blue_solid, vmin=vmin, vmax=vmax,
c=values, alpha=alpha, linewidth=0, zorder=1)
# smooth_values -= nxp.nanpercentile(smooth_values, 5)
# smooth_values /= np.nanpercentile(smooth_values, 95)
smooth_values -= vmin
if vmax - vmin > 0:
smooth_values /= vmax - vmin
for i in range(len(xs) - 1):
if ds[i] > 0.05 or ds[i + 1] > 0.05:
pl.fill_between([xs[i], xs[i + 1]], [pos + ds[i], pos + ds[i + 1]],
[pos - ds[i], pos - ds[i + 1]], color=red_blue_solid(smooth_values[i]),
zorder=2)
else:
parts = pl.violinplot(shap_values[:, feature_order], range(len(feature_order)), points=200, vert=False,
widths=0.7,
showmeans=False, showextrema=False, showmedians=False)
for pc in parts['bodies']:
pc.set_facecolor(color)
pc.set_edgecolor('none')
pc.set_alpha(alpha)
elif plot_type == "layered_violin": # courtesy of @kodonnell
num_x_points = 200
bins = np.linspace(0, features.shape[0], layered_violin_max_num_bins + 1).round(0).astype(
'int') # the indices of the feature data corresponding to each bin
shap_min, shap_max = np.min(shap_values[:, :-1]), np.max(shap_values[:, :-1])
x_points = np.linspace(shap_min, shap_max, num_x_points)
# loop through each feature and plot:
for pos, ind in enumerate(feature_order):
# decide how to handle: if #unique < layered_violin_max_num_bins then split by unique value, otherwise use bins/percentiles.
# to keep simpler code, in the case of uniques, we just adjust the bins to align with the unique counts.
feature = features[:, ind]
unique, counts = np.unique(feature, return_counts=True)
if unique.shape[0] <= layered_violin_max_num_bins:
order = np.argsort(unique)
thesebins = np.cumsum(counts[order])
thesebins = np.insert(thesebins, 0, 0)
else:
thesebins = bins
nbins = thesebins.shape[0] - 1
# order the feature data so we can apply percentiling
order = np.argsort(feature)
# x axis is located at y0 = pos, with pos being there for offset
y0 = np.ones(num_x_points) * pos
# calculate kdes:
ys = np.zeros((nbins, num_x_points))
for i in range(nbins):
# get shap values in this bin:
shaps = shap_values[order[thesebins[i]:thesebins[i + 1]], ind]
# if there's only one element, then we can't
if shaps.shape[0] == 1:
warnings.warn(
"not enough data in bin #%d for feature %s, so it'll be ignored. Try increasing the number of records to plot."
% (i, feature_names[ind]))
# to ignore it, just set it to the previous y-values (so the area between them will be zero). Not ys is already 0, so there's
# nothing to do if i == 0
if i > 0:
ys[i, :] = ys[i - 1, :]
continue
# save kde of them: note that we add a tiny bit of gaussian noise to avoid singular matrix errors
ys[i, :] = gaussian_kde(shaps + np.random.normal(loc=0, scale=0.001, size=shaps.shape[0]))(x_points)
# scale it up so that the 'size' of each y represents the size of the bin. For continuous data this will
# do nothing, but when we've gone with the unqique option, this will matter - e.g. if 99% are male and 1%
# female, we want the 1% to appear a lot smaller.
size = thesebins[i + 1] - thesebins[i]
bin_size_if_even = features.shape[0] / nbins
relative_bin_size = size / bin_size_if_even
ys[i, :] *= relative_bin_size
# now plot 'em. We don't plot the individual strips, as this can leave whitespace between them.
# instead, we plot the full kde, then remove outer strip and plot over it, etc., to ensure no
# whitespace
ys = np.cumsum(ys, axis=0)
width = 0.8
scale = ys.max() * 2 / width # 2 is here as we plot both sides of x axis
for i in range(nbins - 1, -1, -1):
y = ys[i, :] / scale
c = pl.get_cmap(color)(i / (
nbins - 1)) if color in pl.cm.datad else color # if color is a cmap, use it, otherwise use a color
pl.fill_between(x_points, pos - y, pos + y, facecolor=c)
pl.xlim(shap_min, shap_max)
# draw the color bar
if color_bar and features is not None and (plot_type != "layered_violin" or color in pl.cm.datad):
import matplotlib.cm as cm
m = cm.ScalarMappable(cmap=red_blue_solid if plot_type != "layered_violin" else pl.get_cmap(color))
m.set_array([0, 1])
cb = pl.colorbar(m, ticks=[0, 1], aspect=1000)
cb.set_ticklabels([labels['FEATURE_VALUE_LOW'], labels['FEATURE_VALUE_HIGH']])
cb.set_label(labels['FEATURE_VALUE'], size=12, labelpad=0)
cb.ax.tick_params(labelsize=11, length=0)
cb.set_alpha(1)
cb.outline.set_visible(False)
bbox = cb.ax.get_window_extent().transformed(pl.gcf().dpi_scale_trans.inverted())
cb.ax.set_aspect((bbox.height - 0.9) * 20)
# cb.draw_all()
pl.gca().xaxis.set_ticks_position('bottom')
pl.gca().yaxis.set_ticks_position('none')
pl.gca().spines['right'].set_visible(False)
pl.gca().spines['top'].set_visible(False)
pl.gca().spines['left'].set_visible(False)
pl.gca().tick_params(color=axis_color, labelcolor=axis_color)
pl.yticks(range(len(feature_order)), [feature_names[i] for i in feature_order], fontsize=13)
pl.gca().tick_params('y', length=20, width=0.5, which='major')
pl.gca().tick_params('x', labelsize=11)
pl.ylim(-1, len(feature_order))
pl.xlabel(labels['VALUE'], fontsize=13)
pl.tight_layout()
# if show:
# pl.show()
return mpl_fig
def approx_interactions(index, shap_values, X):
""" Order other features by how much interaction they seem to have with the feature at the given index.
This just bins the SHAP values for a feature along that feature's value. For true Shapley interaction
index values for SHAP see the interaction_contribs option implemented in XGBoost.
"""
if X.shape[0] > 10000:
a = np.arange(X.shape[0])
np.random.shuffle(a)
inds = a[:10000]
else:
inds = np.arange(X.shape[0])
x = X[inds, index]
srt = np.argsort(x)
shap_ref = shap_values[inds, index]
shap_ref = shap_ref[srt]
inc = max(min(int(len(x) / 10.0), 50), 1)
interactions = []
for i in range(X.shape[1]):
val_other = X[inds, i][srt].astype(np.float)
v = 0.0
if not (i == index or np.sum(np.abs(val_other)) < 1e-8):
for j in range(0, len(x), inc):
if np.std(val_other[j:j + inc]) > 0 and np.std(shap_ref[j:j + inc]) > 0:
v += abs(np.corrcoef(shap_ref[j:j + inc], val_other[j:j + inc])[0, 1])
interactions.append(v)
return np.argsort(-np.abs(interactions))
def shap_dependence_plot(ind, shap_values, features, feature_names=None, display_features=None,
interaction_index="auto", color="#1E88E5", axis_color="#333333",
dot_size=16, alpha=1, title=None, show=True):
"""
Create a SHAP dependence plot, colored by an interaction feature.
Parameters
----------
ind : int
Index of the feature to plot.
shap_values : numpy.array
Matrix of SHAP values (# samples x # features)
features : numpy.array or pandas.DataFrame
Matrix of feature values (# samples x # features)
feature_names : list
Names of the features (length # features)
display_features : numpy.array or pandas.DataFrame
Matrix of feature values for visual display (such as strings instead of coded values)
interaction_index : "auto", None, or int
The index of the feature used to color the plot.
"""
# convert from DataFrames if we got any
if str(type(features)).endswith("'pandas.core.frame.DataFrame'>"):
if feature_names is None:
feature_names = features.columns
features = features.values
if str(type(display_features)).endswith("'pandas.core.frame.DataFrame'>"):
if feature_names is None:
feature_names = display_features.columns
display_features = display_features.values
elif display_features is None:
display_features = features
if feature_names is None:
feature_names = [labels['FEATURE'] % str(i) for i in range(shap_values.shape[1] - 1)]
# allow vectors to be passed
if len(shap_values.shape) == 1:
shap_values = np.reshape(shap_values, len(shap_values), 1)
if len(features.shape) == 1:
features = np.reshape(features, len(features), 1)
def convert_name(ind):
if type(ind) == str:
nzinds = np.where(feature_names == ind)[0]
if len(nzinds) == 0:
print("Could not find feature named: " + ind)
return None
else:
return nzinds[0]
else:
return ind
ind = convert_name(ind)
mpl_fig = pl.gcf()
ax = mpl_fig.gca()
# plotting SHAP interaction values
if len(shap_values.shape) == 3 and len(ind) == 2:
ind1 = convert_name(ind[0])
ind2 = convert_name(ind[1])
if ind1 == ind2:
proj_shap_values = shap_values[:, ind2, :]
else:
proj_shap_values = shap_values[:, ind2, :] * 2 # off-diag values are split in half
# TODO: remove recursion; generally the functions should be shorter for more maintainable code
return shap_dependence_plot(
ind1, proj_shap_values, features, feature_names=feature_names,
interaction_index=ind2, display_features=display_features, show=False
)
assert shap_values.shape[0] == features.shape[0], \
"'shap_values' and 'features' values must have the same number of rows!"
assert shap_values.shape[1] == features.shape[1], \
"'shap_values' must have the same number of columns as 'features'!"
# get both the raw and display feature values
xv = features[:, ind]
xd = display_features[:, ind]
s = shap_values[:, ind]
if type(xd[0]) == str:
name_map = {}
for i in range(len(xv)):
name_map[xd[i]] = xv[i]
xnames = list(name_map.keys())
# allow a single feature name to be passed alone
if type(feature_names) == str:
feature_names = [feature_names]
name = feature_names[ind]
# guess what other feature as the stongest interaction with the plotted feature
if interaction_index == "auto":
interaction_index = approx_interactions(ind, shap_values, features)[0]
interaction_index = convert_name(interaction_index)
categorical_interaction = False
# get both the raw and display color values
if interaction_index is not None:
cv = features[:, interaction_index]
cd = display_features[:, interaction_index]
clow = np.nanpercentile(features[:, interaction_index].astype(np.float), 5)
chigh = np.nanpercentile(features[:, interaction_index].astype(np.float), 95)
if type(cd[0]) == str:
cname_map = {}
for i in range(len(cv)):
cname_map[cd[i]] = cv[i]
cnames = list(cname_map.keys())
categorical_interaction = True
elif clow % 1 == 0 and chigh % 1 == 0 and len(set(features[:, interaction_index])) < 50:
categorical_interaction = True
# discritize colors for categorical features
color_norm = None
if categorical_interaction and clow != chigh:
bounds = np.linspace(clow, chigh, chigh - clow + 2)
color_norm = matplotlib.colors.BoundaryNorm(bounds, red_blue.N)
# the actual scatter plot, TODO: adapt the dot_size to the number of data points?
if interaction_index is not None:
pl.scatter(xv, s, s=dot_size, linewidth=0, c=features[:, interaction_index], cmap=red_blue,
alpha=alpha, vmin=clow, vmax=chigh, norm=color_norm, rasterized=len(xv) > 500)
else:
pl.scatter(xv, s, s=dot_size, linewidth=0, color="#1E88E5",
alpha=alpha, rasterized=len(xv) > 500)
if interaction_index != ind and interaction_index is not None:
# draw the color bar
if type(cd[0]) == str:
tick_positions = [cname_map[n] for n in cnames]
if len(tick_positions) == 2:
tick_positions[0] -= 0.25
tick_positions[1] += 0.25
cb = pl.colorbar(ticks=tick_positions)
cb.set_ticklabels(cnames)
else:
cb = pl.colorbar()
cb.set_label(feature_names[interaction_index], size=13)
cb.ax.tick_params(labelsize=11)
if categorical_interaction:
cb.ax.tick_params(length=0)
cb.set_alpha(1)
cb.outline.set_visible(False)
bbox = cb.ax.get_window_extent().transformed(pl.gcf().dpi_scale_trans.inverted())
cb.ax.set_aspect((bbox.height - 0.7) * 20)
# make the plot more readable
if interaction_index != ind:
pl.gcf().set_size_inches(7.5, 5)
else:
pl.gcf().set_size_inches(6, 5)
# pl.xlabel(name, color=axis_color, fontsize=13)
# pl.ylabel(labels['VALUE_FOR'] % name, color=axis_color, fontsize=13)
if title is not None:
pl.title(title, color=axis_color, fontsize=13)
pl.gca().xaxis.set_ticks_position('bottom')
pl.gca().yaxis.set_ticks_position('left')
pl.gca().spines['right'].set_visible(False)
pl.gca().spines['top'].set_visible(False)
pl.gca().tick_params(color=axis_color, labelcolor=axis_color, labelsize=11)
for spine in pl.gca().spines.values():
spine.set_edgecolor(axis_color)
if type(xd[0]) == str:
pl.xticks([name_map[n] for n in xnames], xnames, rotation='vertical', fontsize=11)
# if show:
# pl.show()
if ind1 == ind2:
pl.ylabel(labels['MAIN_EFFECT'] % feature_names[ind1])
else:
pl.ylabel(labels['INTERACTION_EFFECT'] % (feature_names[ind1], feature_names[ind2]))
return mpl_fig, interaction_index
# # if show:
# # pl.show()
# return
# return mpl_fig
# assert shap_values.shape[0] == features.shape[0], "'shap_values' and 'features' values must have the same number of rows!"
# assert shap_values.shape[1] == features.shape[1] + 1, "'shap_values' must have one more column than 'features'!"
# get both the raw and display feature values
xv = features[:, ind]
xd = display_features[:, ind]
s = shap_values[:, ind]
if type(xd[0]) == str:
name_map = {}
for i in range(len(xv)):
name_map[xd[i]] = xv[i]
xnames = list(name_map.keys())
# allow a single feature name to be passed alone
if type(feature_names) == str:
feature_names = [feature_names]
name = feature_names[ind]
# guess what other feature as the stongest interaction with the plotted feature
if interaction_index == "auto":
interaction_index = approx_interactions(ind, shap_values, features)[0]
interaction_index = convert_name(interaction_index)
categorical_interaction = False
# get both the raw and display color values
if interaction_index is not None:
cv = features[:, interaction_index]
cd = display_features[:, interaction_index]
clow = np.nanpercentile(features[:, interaction_index].astype(np.float), 5)
chigh = np.nanpercentile(features[:, interaction_index].astype(np.float), 95)
if type(cd[0]) == str:
cname_map = {}
for i in range(len(cv)):
cname_map[cd[i]] = cv[i]
cnames = list(cname_map.keys())
categorical_interaction = True
elif clow % 1 == 0 and chigh % 1 == 0 and len(set(features[:, interaction_index])) < 50:
categorical_interaction = True
# discritize colors for categorical features
color_norm = None
if categorical_interaction and clow != chigh:
bounds = np.linspace(clow, chigh, chigh - clow + 2)
color_norm = matplotlib.colors.BoundaryNorm(bounds, red_blue.N)
# the actual scatter plot, TODO: adapt the dot_size to the number of data points?
if interaction_index is not None:
pl.scatter(xv, s, s=dot_size, linewidth=0, c=features[:, interaction_index], cmap=red_blue,
alpha=alpha, vmin=clow, vmax=chigh, norm=color_norm, rasterized=len(xv) > 500)
else:
pl.scatter(xv, s, s=dot_size, linewidth=0, color="#1E88E5",
alpha=alpha, rasterized=len(xv) > 500)
if interaction_index != ind and interaction_index is not None:
# draw the color bar
if type(cd[0]) == str:
tick_positions = [cname_map[n] for n in cnames]
if len(tick_positions) == 2:
tick_positions[0] -= 0.25
tick_positions[1] += 0.25
cb = pl.colorbar(ticks=tick_positions)
cb.set_ticklabels(cnames)
else:
cb = pl.colorbar()
cb.set_label(feature_names[interaction_index], size=13)
cb.ax.tick_params(labelsize=11)
if categorical_interaction:
cb.ax.tick_params(length=0)
cb.set_alpha(1)
cb.outline.set_visible(False)
bbox = cb.ax.get_window_extent().transformed(pl.gcf().dpi_scale_trans.inverted())
cb.ax.set_aspect((bbox.height - 0.7) * 20)
# make the plot more readable
if interaction_index != ind:
pl.gcf().set_size_inches(7.5, 5)
else:
pl.gcf().set_size_inches(6, 5)
pl.xlabel(name, color=axis_color, fontsize=13)
pl.ylabel(labels['VALUE_FOR'] % name, color=axis_color, fontsize=13)
if title is not None:
pl.title(title, color=axis_color, fontsize=13)
pl.gca().xaxis.set_ticks_position('bottom')
pl.gca().yaxis.set_ticks_position('left')
pl.gca().spines['right'].set_visible(False)
pl.gca().spines['top'].set_visible(False)
pl.gca().tick_params(color=axis_color, labelcolor=axis_color, labelsize=11)
for spine in pl.gca().spines.values():
spine.set_edgecolor(axis_color)
if type(xd[0]) == str:
pl.xticks([name_map[n] for n in xnames], xnames, rotation='vertical', fontsize=11)
# if show:
# pl.show()
return mpl_fig, interaction_index |