Spaces:
Running
Running
Commit
·
33c190e
1
Parent(s):
3e03787
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,18 @@ import sklearn
|
|
6 |
import xgboost
|
7 |
import shap
|
8 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
seed=42
|
10 |
|
11 |
annotations = pd.read_csv("annotations_dataset.csv")
|
@@ -33,7 +45,6 @@ xgb = xgboost.XGBRegressor(
|
|
33 |
|
34 |
|
35 |
xgb.fit(X, Y)
|
36 |
-
|
37 |
prediction_list = list(xgb.predict(annotations))
|
38 |
predictions = [round(prediction, 2) for prediction in prediction_list]
|
39 |
|
@@ -98,16 +109,18 @@ else:
|
|
98 |
|
99 |
input_gene = st.text_input("Input individual HGNC gene:")
|
100 |
df2 = df_total[df_total.index == input_gene]
|
|
|
|
|
101 |
st.dataframe(df2)
|
102 |
df2.drop(columns='XGB_Score', inplace=True)
|
103 |
|
104 |
if input_gene:
|
105 |
-
shap_values = explainer.shap_values(
|
106 |
shap.getjs()
|
107 |
force_plot = shap.force_plot(
|
108 |
explainer.expected_value,
|
109 |
shap_values,
|
110 |
-
|
111 |
matplotlib = True,show=False)
|
112 |
st.pyplot(fig=force_plot)
|
113 |
else:
|
@@ -117,4 +130,5 @@ st.markdown("""
|
|
117 |
Total Gene Prioritisation Results:
|
118 |
""")
|
119 |
|
|
|
120 |
st.dataframe(df_total)
|
|
|
6 |
import xgboost
|
7 |
import shap
|
8 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
9 |
+
|
10 |
+
# CSS to inject contained in a string
|
11 |
+
hide_table_row_index = """
|
12 |
+
<style>
|
13 |
+
thead tr th:first-child {display:none}
|
14 |
+
tbody th {display:none}
|
15 |
+
</style>
|
16 |
+
"""
|
17 |
+
|
18 |
+
# Inject CSS with Markdown
|
19 |
+
st.markdown(hide_table_row_index, unsafe_allow_html=True)
|
20 |
+
|
21 |
seed=42
|
22 |
|
23 |
annotations = pd.read_csv("annotations_dataset.csv")
|
|
|
45 |
|
46 |
|
47 |
xgb.fit(X, Y)
|
|
|
48 |
prediction_list = list(xgb.predict(annotations))
|
49 |
predictions = [round(prediction, 2) for prediction in prediction_list]
|
50 |
|
|
|
109 |
|
110 |
input_gene = st.text_input("Input individual HGNC gene:")
|
111 |
df2 = df_total[df_total.index == input_gene]
|
112 |
+
df2_shap = df_total[df_total.index == input_gene]
|
113 |
+
df2['Gene'] = df2.index
|
114 |
st.dataframe(df2)
|
115 |
df2.drop(columns='XGB_Score', inplace=True)
|
116 |
|
117 |
if input_gene:
|
118 |
+
shap_values = explainer.shap_values(df2_shap)
|
119 |
shap.getjs()
|
120 |
force_plot = shap.force_plot(
|
121 |
explainer.expected_value,
|
122 |
shap_values,
|
123 |
+
df2_shap ,
|
124 |
matplotlib = True,show=False)
|
125 |
st.pyplot(fig=force_plot)
|
126 |
else:
|
|
|
130 |
Total Gene Prioritisation Results:
|
131 |
""")
|
132 |
|
133 |
+
df_total['Gene'] = df_total.index
|
134 |
st.dataframe(df_total)
|