hlnicholls commited on
Commit
89c1ddc
·
1 Parent(s): 6ccef40

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -79,6 +79,12 @@ explainer = shap.TreeExplainer(xgb)
79
  def convert_df(df):
80
  return df.to_csv(index=False).encode('utf-8')
81
 
 
 
 
 
 
 
82
 
83
  if len(gene_list) > 1:
84
  df = df_total[df_total.index.isin(gene_list)]
@@ -104,7 +110,7 @@ if len(gene_list) > 1:
104
  df_shap.drop(columns='XGB_Score', inplace=True)
105
  shap_values = explainer.shap_values(df_shap)
106
  #summary_plot = shap.summary_plot(shap_values, df_shap)
107
- summary_plot = shap_summary_plot(shap_values, features=df, feature_names=df.columns, max_display=8)
108
  st.pyplot(fig=summary_plot)
109
  st.caption("SHAP Summary Plot of All Input Genes")
110
  feature_order = np.argsort(np.sum(np.abs(shap_values), axis=0)[:-1])
@@ -128,7 +134,7 @@ st.dataframe(df2)
128
 
129
  if input_gene:
130
  if ' ' in input_gene or ',' in input_gene:
131
- st.write('Please input only a single HGNC gene name.')
132
  else:
133
  df2_shap = df_total[df_total.index == input_gene]
134
  df2_shap.drop(columns='XGB_Score', inplace=True)
@@ -146,7 +152,7 @@ else:
146
  pass
147
 
148
  st.markdown("""
149
- Total Gene Prioritisation Results:
150
  """)
151
 
152
  df_total_output = df_total
 
79
  def convert_df(df):
80
  return df.to_csv(index=False).encode('utf-8')
81
 
82
+ features = df[['Gene','XGB_Score', 'mousescore_Exomiser',
83
+ 'SDI', 'Liver_GTExTPM', 'pLI_ExAC',
84
+ 'HIPred',
85
+ 'Cells - EBV-transformed lymphocytes_GTExTPM',
86
+ 'Pituitary_GTExTPM',
87
+ 'IPA_BP_annotation']]
88
 
89
  if len(gene_list) > 1:
90
  df = df_total[df_total.index.isin(gene_list)]
 
110
  df_shap.drop(columns='XGB_Score', inplace=True)
111
  shap_values = explainer.shap_values(df_shap)
112
  #summary_plot = shap.summary_plot(shap_values, df_shap)
113
+ summary_plot = shap_summary_plot(shap_values, features=features, feature_names=features.columns, max_display=8)
114
  st.pyplot(fig=summary_plot)
115
  st.caption("SHAP Summary Plot of All Input Genes")
116
  feature_order = np.argsort(np.sum(np.abs(shap_values), axis=0)[:-1])
 
134
 
135
  if input_gene:
136
  if ' ' in input_gene or ',' in input_gene:
137
+ st.write('Input Error: Please input only a single HGNC gene name with no white spaces or commas.')
138
  else:
139
  df2_shap = df_total[df_total.index == input_gene]
140
  df2_shap.drop(columns='XGB_Score', inplace=True)
 
152
  pass
153
 
154
  st.markdown("""
155
+ ### Total Gene Prioritisation Results:
156
  """)
157
 
158
  df_total_output = df_total