Spaces:
Sleeping
Sleeping
Commit
·
d22276b
1
Parent(s):
1ededbc
Upload dynamic_shap_plot.py
Browse files- dynamic_shap_plot.py +115 -0
dynamic_shap_plot.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from shap_plots import shap_summary_plot, shap_dependence_plot
|
2 |
+
import plotly.tools as tls
|
3 |
+
import dash_core_components as dcc
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import xgboost
|
7 |
+
import shap
|
8 |
+
import matplotlib
|
9 |
+
import plotly.graph_objs as go
|
10 |
+
try:
|
11 |
+
import matplotlib.pyplot as pl
|
12 |
+
from matplotlib.colors import LinearSegmentedColormap
|
13 |
+
from matplotlib.ticker import MaxNLocator
|
14 |
+
except ImportError:
|
15 |
+
pass
|
16 |
+
from sklearn import preprocessing
|
17 |
+
|
18 |
+
cdict1 = {
|
19 |
+
'red': ((0.0, 0.11764705882352941, 0.11764705882352941),
|
20 |
+
(1.0, 0.9607843137254902, 0.9607843137254902)),
|
21 |
+
|
22 |
+
'green': ((0.0, 0.5333333333333333, 0.5333333333333333),
|
23 |
+
(1.0, 0.15294117647058825, 0.15294117647058825)),
|
24 |
+
|
25 |
+
'blue': ((0.0, 0.8980392156862745, 0.8980392156862745),
|
26 |
+
(1.0, 0.3411764705882353, 0.3411764705882353)),
|
27 |
+
|
28 |
+
'alpha': ((0.0, 1, 1),
|
29 |
+
(0.5, 1, 1),
|
30 |
+
(1.0, 1, 1))
|
31 |
+
} # #1E88E5 -> #ff0052
|
32 |
+
red_blue = LinearSegmentedColormap('RedBlue', cdict1)
|
33 |
+
|
34 |
+
def matplotlib_to_plotly(cmap, pl_entries):
|
35 |
+
h = 1.0/(pl_entries-1)
|
36 |
+
pl_colorscale = []
|
37 |
+
|
38 |
+
for k in range(pl_entries):
|
39 |
+
C = list(map(np.uint8, np.array(cmap(k*h)[:3])*255))
|
40 |
+
pl_colorscale.append([k*h, 'rgb'+str((C[0], C[1], C[2]))])
|
41 |
+
|
42 |
+
return pl_colorscale
|
43 |
+
|
44 |
+
red_blue = matplotlib_to_plotly(red_blue, 255)
|
45 |
+
|
46 |
+
def summary_plot_plotly_fig(shap_values, df_shap, feature_names, max_display = 8):
|
47 |
+
#data = pd.read_csv(dataset, encoding="ISO-8859-1")
|
48 |
+
#X = data.drop(['target column'], axis=1)
|
49 |
+
|
50 |
+
#y = data[target]
|
51 |
+
#y = y/max(y)
|
52 |
+
|
53 |
+
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
|
54 |
+
|
55 |
+
#X_train.fillna((-999), inplace=True)
|
56 |
+
#X_test.fillna((-999), inplace=True)
|
57 |
+
|
58 |
+
#_, shap_values, feature_names = train_model_and_return_shap_values(X, y, target)
|
59 |
+
|
60 |
+
mpl_fig = shap_summary_plot(shap_values, df_shap, feature_names=feature_names, max_display=20)
|
61 |
+
|
62 |
+
plotly_fig = tls.mpl_to_plotly(mpl_fig)
|
63 |
+
|
64 |
+
plotly_fig['layout'] = {'xaxis': {'title': 'SHAP value (impact on model output)'}}
|
65 |
+
|
66 |
+
feature_order = np.argsort(np.sum(np.abs(shap_values), axis=0)[:-1])
|
67 |
+
feature_order = feature_order[-min(max_display, len(feature_order)):]
|
68 |
+
text = [feature_names[i] for i in feature_order]
|
69 |
+
text = iter(text)
|
70 |
+
|
71 |
+
for i in range(1, len(plotly_fig['data']), 2):
|
72 |
+
t = text.__next__()
|
73 |
+
plotly_fig['data'][i]['name'] = ''
|
74 |
+
plotly_fig['data'][i]['text'] = t
|
75 |
+
plotly_fig['data'][i]['hoverinfo'] = 'text'
|
76 |
+
|
77 |
+
colorbar_trace = go.Scatter(x=[None],
|
78 |
+
y=[None],
|
79 |
+
mode='markers',
|
80 |
+
marker=dict(
|
81 |
+
colorscale=red_blue,
|
82 |
+
showscale=True,
|
83 |
+
cmin=-5,
|
84 |
+
cmax=5,
|
85 |
+
colorbar=dict(thickness=5, tickvals=[-5, 5], ticktext=['Low', 'High'], outlinewidth=0)
|
86 |
+
),
|
87 |
+
hoverinfo='none'
|
88 |
+
)
|
89 |
+
|
90 |
+
plotly_fig['layout']['showlegend'] = False
|
91 |
+
plotly_fig['layout']['hovermode'] = 'closest'
|
92 |
+
plotly_fig['layout']['height']=600
|
93 |
+
plotly_fig['layout']['width']=500
|
94 |
+
|
95 |
+
plotly_fig['layout']['xaxis'].update(zeroline=True, showline=True, ticklen=4, showgrid=False)
|
96 |
+
plotly_fig['layout']['yaxis'].update(dict(visible=False))
|
97 |
+
plotly_fig.add_trace(colorbar_trace)
|
98 |
+
plotly_fig.layout.update(
|
99 |
+
annotations=[dict(
|
100 |
+
x=1.18,
|
101 |
+
align="right",
|
102 |
+
valign="top",
|
103 |
+
text='Feature value',
|
104 |
+
showarrow=False,
|
105 |
+
xref="paper",
|
106 |
+
yref="paper",
|
107 |
+
xanchor="right",
|
108 |
+
yanchor="middle",
|
109 |
+
textangle=-90,
|
110 |
+
font=dict(family='Calibri', size=14)
|
111 |
+
)
|
112 |
+
],
|
113 |
+
margin=dict(t=20)
|
114 |
+
)
|
115 |
+
return plotly_fig
|