hlnicholls commited on
Commit
f3dc1ee
·
verified ·
1 Parent(s): a72dad9

Upload 5 files

Browse files
Files changed (5) hide show
  1. STRINGdb_data.tsv +14 -0
  2. app.py +206 -0
  3. banner.png +0 -0
  4. colocalisation_results.csv +0 -0
  5. requirements.txt +6 -0
STRINGdb_data.tsv ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ node1 node2 node1_string_id node2_string_id neighborhood_on_chromosome gene_fusion phylogenetic_cooccurrence homology coexpression experimentally_determined_interaction database_annotated automated_textmining combined_score
2
+ CRHR1 MAPT 9606.ENSP00000381333 9606.ENSP00000340820 0 0 0 0 0.172 0 0 0.717 0.755
3
+ EPHA2 ITGB3 9606.ENSP00000351209 9606.ENSP00000452786 0 0 0 0 0.056 0.300 0 0.366 0.544
4
+ EPHA2 PTPN11 9606.ENSP00000351209 9606.ENSP00000489597 0 0 0 0 0.083 0.455 0 0.773 0.877
5
+ ITGB3 RAF1 9606.ENSP00000452786 9606.ENSP00000401888 0 0 0 0 0 0.052 0.500 0.086 0.529
6
+ ITGB3 PTPN11 9606.ENSP00000452786 9606.ENSP00000489597 0 0 0 0 0.106 0.328 0 0.492 0.668
7
+ MAPT NPEPPS 9606.ENSP00000340820 9606.ENSP00000320324 0 0 0 0 0.056 0.319 0 0.480 0.636
8
+ MAPT PTPN11 9606.ENSP00000340820 9606.ENSP00000489597 0 0 0 0 0 0.303 0 0.513 0.646
9
+ MYL2 RPL6 9606.ENSP00000228841 9606.ENSP00000403172 0 0 0 0 0.067 0 0 0.568 0.580
10
+ MYL2 TNNT3 9606.ENSP00000228841 9606.ENSP00000370975 0 0 0 0 0.510 0.127 0.500 0.500 0.879
11
+ MYL2 MYL4 9606.ENSP00000228841 9606.ENSP00000347055 0 0 0 0.673 0.168 0.311 0.900 0.584 0.973
12
+ MYL4 TNNT3 9606.ENSP00000347055 9606.ENSP00000370975 0 0 0 0 0.157 0.127 0.500 0.395 0.747
13
+ PTPN11 RAF1 9606.ENSP00000489597 9606.ENSP00000401888 0 0 0 0 0.095 0.098 0 0.693 0.728
14
+ RPL6 RPL7A 9606.ENSP00000403172 9606.ENSP00000361076 0 0 0 0 0.990 0.995 0.720 0.712 0.999
app.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import re
3
+ import pandas as pd
4
+ import networkx as nx
5
+ import numpy as np
6
+ import matplotlib.pyplot as plt
7
+ from matplotlib import cm
8
+
9
+ st.image("banner.png", use_column_width=True)
10
+ st.markdown(
11
+ "<h1 style='text-align: center;'>CMR and Heart Failure Colocalisation Viewer</h1>",
12
+ unsafe_allow_html=True
13
+ )
14
+
15
+ # Description text
16
+ st.markdown(
17
+ """
18
+ This interactive app allows you to explore colocalising genes between cardiovascular magnetic resonance image (CMR) traits and heart failure (HF) that have interacting drugs.
19
+ You can input multiple HGNC gene names or disease terms to filter the dataset or enter a single gene for more detailed information.
20
+ Additionally, you can visualize a protein interaction network for specific genes using STRINGdb data.
21
+ """,
22
+ unsafe_allow_html=True
23
+ )
24
+
25
+ # Load and prepare colocalisation results
26
+ annotations = pd.read_csv("colocalisation_results.csv")
27
+ annotations.fillna(0, inplace=True)
28
+ annotations = annotations.set_index("Gene")
29
+
30
+ # Define a function to collect genes from input
31
+ collect_genes = lambda x: [str(i) for i in re.split(",|,\s+|\s+", x) if i != ""]
32
+ input_gene_list = st.text_input("Input a list of multiple HGNC genes (enter comma separated):")
33
+ gene_list = collect_genes(input_gene_list)
34
+
35
+ # Function to convert DataFrame to CSV for download
36
+ @st.cache_data
37
+ def convert_df(df):
38
+ return df.to_csv(index=False).encode('utf-8')
39
+
40
+ # Filter based on gene list
41
+ st.markdown("### View colocalisation results for selected genes or the entire dataset.")
42
+
43
+ if len(gene_list) > 1:
44
+ # Filter for input gene list
45
+ df = annotations[annotations.index.isin(gene_list)]
46
+ df['Gene'] = df.index
47
+ df.reset_index(drop=True, inplace=True)
48
+
49
+ # Reorder columns to have "Gene" as the first column
50
+ df = df[['Gene'] + [col for col in df.columns if col != 'Gene']]
51
+
52
+ # Display the filtered results
53
+ st.dataframe(df)
54
+ output = df[['Gene']]
55
+ csv = convert_df(output)
56
+ # st.download_button("Download Filtered Colocalisation Results", csv, "filtered_colocalisation_results.csv", "text/csv", key='download-csv')
57
+
58
+ # Add a new search box for filtering by disease name
59
+ input_disease = st.text_input("Input a disease name to search in drug terms (partial match allowed):")
60
+
61
+ if input_disease:
62
+ # Search for partial matches in the "terms_drug" column
63
+ df_disease_filtered = annotations[annotations['terms_drug'].str.contains(input_disease, case=False, na=False)]
64
+
65
+ if not df_disease_filtered.empty:
66
+ st.markdown(f"### Colocalisation results for disease: {input_disease}")
67
+ df_disease_filtered['Gene'] = df_disease_filtered.index
68
+ df_disease_filtered.reset_index(drop=True, inplace=True)
69
+
70
+ # Reorder columns to have "Gene" as the first column
71
+ df_disease_filtered = df_disease_filtered[['Gene'] + [col for col in df_disease_filtered.columns if col != 'Gene']]
72
+
73
+ # Display filtered dataframe
74
+ st.dataframe(df_disease_filtered)
75
+
76
+ # Convert filtered dataframe to CSV for download
77
+ csv_disease_filtered = convert_df(df_disease_filtered)
78
+ # st.download_button("Download Filtered Colocalisation Results", csv_disease_filtered, "filtered_colocalisation_disease_results.csv", "text/csv", key='download-disease-csv')
79
+ else:
80
+ st.write(f"No results found for disease: {input_disease}")
81
+
82
+ # Display individual gene details if a single gene is input
83
+ input_gene = st.text_input("Input an individual HGNC gene:")
84
+ if input_gene:
85
+ df2 = annotations[annotations.index == input_gene]
86
+ if not df2.empty:
87
+ df2['Gene'] = df2.index
88
+ df2.reset_index(drop=True, inplace=True)
89
+
90
+ # Reorder columns to have "Gene" as the first column
91
+ df2 = df2[['Gene'] + [col for col in df2.columns if col != 'Gene']]
92
+
93
+ st.dataframe(df2)
94
+
95
+ # Provide a link to the gene's DrugnomeAI page
96
+ url = f"https://astrazeneca-cgr-publications.github.io/DrugnomeAI/geneview.html?gene={input_gene}"
97
+ markdown_link = f"[{input_gene} druggability in DrugnomeAI]({url})"
98
+ st.markdown(markdown_link, unsafe_allow_html=True)
99
+ else:
100
+ st.write("Gene not found in the dataset.")
101
+
102
+ # Display the entire dataset with download option
103
+ st.markdown("### All Colocalisation Results Interacting with Drugs")
104
+ df_total_output = annotations.copy()
105
+ df_total_output['Gene'] = df_total_output.index
106
+ df_total_output.reset_index(drop=True, inplace=True)
107
+
108
+ # Reorder columns to have "Gene" as the first column
109
+ df_total_output = df_total_output[['Gene'] + [col for col in df_total_output.columns if col != 'Gene']]
110
+
111
+ st.dataframe(df_total_output)
112
+ csv = convert_df(df_total_output)
113
+ # st.download_button("Download Complete Colocalisation Results", csv, "complete_colocalisation_results.csv", "text/csv", key='download-all-csv')
114
+
115
+ # Protein interaction network visualization using STRINGDB_data.tsv
116
+ st.markdown(
117
+ "<h1 style='text-align: center;'>Protein Interaction Networks of Colocalising Drug Targets</h1>",
118
+ unsafe_allow_html=True
119
+ )
120
+
121
+ # Description text
122
+ # Description text
123
+ st.markdown(
124
+ """
125
+ - The color of each node represents its degree (number of direct connections it has with other nodes).
126
+ - The size of each node represents its betweenness centrality.
127
+ - Larger nodes play a more central role in the network, facilitating communication between other proteins.
128
+ - Node edges/connections are colour-coded by confidence of PPI (lighter colors (brighter) represent stronger interactions).
129
+ - Genes that interact with cardiovascular drugs are highlighted with a bold black outline.
130
+ """,
131
+ unsafe_allow_html=True
132
+ )
133
+
134
+
135
+ # Load STRINGDB dataset
136
+ ppi_data = pd.read_csv("STRINGdb_data.tsv", sep='\t')
137
+
138
+ # Create a graph from the STRINGDB PPI data
139
+ G = nx.Graph()
140
+
141
+ # Add edges to the graph based on PPI data
142
+ for index, row in ppi_data.iterrows():
143
+ G.add_edge(row['node1'], row['node2'], weight=row['combined_score'])
144
+
145
+ # Function to rescale values to a given range
146
+ def rescale(l, newmin, newmax):
147
+ arr = list(l)
148
+ return [(x - min(arr)) / (max(arr) - min(arr)) * (newmax - newmin) + newmin for x in arr]
149
+
150
+ # Use the plasma colormap
151
+ graph_colormap = plt.get_cmap('plasma', 12)
152
+
153
+ # Node color varies with Degree
154
+ c = rescale([G.degree(v) for v in G], 0.0, 0.9)
155
+ c = [graph_colormap(i) for i in c]
156
+
157
+ # Node size varies with betweeness centrality - map to range [1500, 7000]
158
+ bc = nx.betweenness_centrality(G)
159
+ s = rescale([v for v in bc.values()], 1500, 7000)
160
+
161
+ # Edge width shows 1 - weight (to convert cost back to strength of interaction)
162
+ ew = rescale([float(G[u][v]['weight']) for u, v in G.edges], 0.1, 4)
163
+ ec = rescale([float(G[u][v]['weight']) for u, v in G.edges], 0.1, 1)
164
+ ec = [graph_colormap(i) for i in ec]
165
+
166
+ # Adjust spring_layout parameters to bring the networks closer together
167
+ pos = nx.spring_layout(G, k=0.5)
168
+
169
+ # Prepare to highlight genes with "Cardiovascular_Drug" as "Yes"
170
+ highlighted_nodes = annotations[annotations['Cardiovascular_Drug'] == 'Yes'].index
171
+
172
+ # Draw the network plot
173
+ plt.figure(figsize=(19, 9), facecolor='white')
174
+
175
+ # Draw the nodes with black outline for highlighted ones
176
+ nx.draw_networkx_nodes(G, pos, node_color=c, node_size=s, edgecolors=['black' if node in highlighted_nodes else 'none' for node in G], linewidths=2)
177
+
178
+ # Draw the edges
179
+ nx.draw_networkx_edges(G, pos, edge_color=ec, width=ew)
180
+
181
+ # Draw node labels with customized font color based on degree
182
+ # Draw node labels with customized font color based on degree
183
+ for node, (x, y) in pos.items():
184
+ # Determine font color
185
+ font_color = 'white' if G.degree(node) < np.median([G.degree(n) for n in G]) else 'black'
186
+
187
+ # Dynamically adjust font size for nodes with white text (smaller font size to fit inside node)
188
+ if font_color == 'white':
189
+ font_size = min(s[list(G.nodes).index(node)] * 0.01, 10) # Adjust the multiplier and limit font size
190
+ else:
191
+ font_size = 12 # Default size for black font
192
+
193
+ plt.text(x, y, node, fontsize=font_size, fontweight='bold', ha='center', va='center', color=font_color)
194
+
195
+
196
+
197
+ # Add a colorbar to represent the node degree color scale
198
+ sm = plt.cm.ScalarMappable(cmap=graph_colormap, norm=plt.Normalize(vmin=0, vmax=1))
199
+ sm.set_array([])
200
+ cbar = plt.colorbar(sm)
201
+ cbar.set_label('Node Degree (Higher = More Connected)', fontsize=12)
202
+
203
+ plt.axis('off')
204
+
205
+ # Display the network plot in the Streamlit app directly
206
+ st.pyplot(plt)
banner.png ADDED
colocalisation_results.csv ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ numpy==1.23.4
2
+ altair==5.1.2
3
+ pandas==2.0.3
4
+ plotly==5.20.0
5
+ matplotlib==3.4.3
6
+ networkx