File size: 1,187 Bytes
9fbf078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import timm
import torch.nn as nn

import torch

def get_efficientnet(model_name):
    model = timm.create_model(model_name, pretrained=True)

    return model

class CustomEfficientNet(nn.Module):
    """
    This class defines a custom EfficientNet network.

    Parameters
    ----------
    target_size : int
        Number of units for the output layer.
    pretrained : bool
        Determine if pretrained weights are used.

    Attributes
    ----------
    model : nn.Module
        EfficientNet model.
    """
    def __init__(self, model_name : str = 'efficientnet_b0',
                 target_size : int = 4, pretrained : bool = True):
        super().__init__()
        self.model = timm.create_model(model_name, pretrained=pretrained)
        
        # Modify the classifier layer
        in_features = self.model.classifier.in_features
        self.model.classifier = nn.Sequential(
            #nn.Dropout(0.5),
            nn.Linear(in_features, 256),
            nn.ReLU(),
            #nn.Dropout(0.5),
            nn.Linear(256, target_size)
        )
            
    def forward(self, x : torch.Tensor) -> torch.Tensor:
        x = self.model(x)

        return x