File size: 9,139 Bytes
cce0ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import json
from pathlib import Path
from typing import Dict, List, Optional

import numpy as np
import requests
from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel


class LeaderboardModel(BaseModel):
    model_name: str
    type: str
    model_link: Optional[str] = None
    scores: Dict[str, float]
    co2_cost: Optional[float] = None

class LeaderboardData(BaseModel):
    models: List[LeaderboardModel]
    updated_at: str

app = FastAPI(
    title="LLM Leaderboard API",
    description="API for serving Open LLM Leaderboard data",
    version="1.0.0"
)

# Add CORS middleware to allow requests from your Gradio app
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # For production, specify your exact frontend URL
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Cache for leaderboard data
cached_data = None
cache_file = Path("leaderboard_cache.json")

def fetch_external_leaderboard_data(refresh: bool = False) -> Optional[Dict]:
    """
    Fetch leaderboard data from external sources like HuggingFace.
    Uses local cache if available and refresh is False.
    """
    global cached_data

    if not refresh and cached_data:
        return cached_data

    if not refresh and cache_file.exists():
        try:
            with open(cache_file) as f:
                cached_data = json.load(f)
                return cached_data
        except:
            pass  # Fall back to fetching if cache read fails

    try:
        # Try different endpoints that might contain leaderboard data
        endpoints = [
            "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/raw/main/leaderboard_data.json",
            "https://huggingface.co/api/spaces/HuggingFaceH4/open_llm_leaderboard/api/get_results",
        ]

        for url in endpoints:
            response = requests.get(url)
            if response.status_code == 200:
                data = response.json()
                cached_data = data
                with open(cache_file, "w") as f:
                    json.dump(data, f)
                return data

        # If all endpoints fail, return None
        return None
    except Exception as e:
        print(f"Error fetching external leaderboard data: {e}")
        return None

def generate_sample_data() -> Dict:
    """
    Generate sample leaderboard data when external data can't be fetched.
    """
    models = [
        {"model_name": "meta-llama/llama-3-70b-instruct", "type": "open"},
        {"model_name": "mistralai/Mistral-7B-Instruct-v0.3", "type": "open"},
        {"model_name": "google/gemma-7b-it", "type": "open"},
        {"model_name": "Qwen/Qwen2-7B-Instruct", "type": "open"},
        {"model_name": "anthropic/claude-3-opus", "type": "closed", "external_link": "https://www.anthropic.com/claude"},
        {"model_name": "OpenAI/gpt-4o", "type": "closed", "external_link": "https://openai.com/gpt-4"},
        {"model_name": "01-ai/Yi-1.5-34B-Chat", "type": "open"},
        {"model_name": "google/gemma-2b", "type": "open"},
        {"model_name": "microsoft/phi-3-mini-4k-instruct", "type": "open"},
        {"model_name": "microsoft/phi-3-mini-128k-instruct", "type": "open"},
        {"model_name": "stabilityai/stable-beluga-7b", "type": "open"},
        {"model_name": "togethercomputer/RedPajama-INCITE-7B-Instruct", "type": "open"},
        {"model_name": "databricks/dbrx-instruct", "type": "closed", "external_link": "https://www.databricks.com/product/machine-learning/large-language-models"},
        {"model_name": "mosaicml/mpt-7b-instruct", "type": "open"},
        {"model_name": "01-ai/Yi-1.5-9B-Chat", "type": "open"},
        {"model_name": "anthropic/claude-3-sonnet", "type": "closed", "external_link": "https://www.anthropic.com/claude"},
        {"model_name": "cohere/command-r-plus", "type": "closed", "external_link": "https://cohere.com/models/command-r-plus"},
        {"model_name": "meta-llama/llama-3-8b-instruct", "type": "open"}
    ]

    np.random.seed(42)  # For reproducibility

    model_data = []
    for model_info in models:
        model_name = model_info["model_name"]
        model_type = model_info["type"]
        external_link = model_info.get("external_link", None)

        # Generate random scores
        average = round(np.random.uniform(40, 90), 2)
        ifeval = round(np.random.uniform(30, 90), 2)
        bbhi = round(np.random.uniform(40, 85), 2)
        math = round(np.random.uniform(20, 80), 2)
        gpqa = round(np.random.uniform(10, 70), 2)
        mujb = round(np.random.uniform(10, 70), 2)
        mmlu = round(np.random.uniform(40, 85), 2)
        co2_cost = round(np.random.uniform(1, 100), 2)

        # If it's an open model, it should have a link to Hugging Face
        model_link = None
        if external_link:
            model_link = external_link
        elif "/" in model_name:
            model_link = f"https://huggingface.co/{model_name}"
        else:
            model_link = f"https://huggingface.co/models?search={model_name}"

        model_data.append({
            "model_name": model_name,
            "type": model_type,
            "model_link": model_link,
            "scores": {
                "average": average,
                "ifeval": ifeval,
                "bbhi": bbhi,
                "math": math,
                "gpqa": gpqa,
                "mujb": mujb,
                "mmlu": mmlu
            },
            "co2_cost": co2_cost
        })

    # Sort by average score
    model_data.sort(key=lambda x: x["scores"]["average"], reverse=True)

    # Create the final data structure
    from datetime import datetime
    leaderboard_data = {
        "models": model_data,
        "updated_at": datetime.now().isoformat()
    }

    return leaderboard_data

@app.get("/")
def read_root():
    return {"message": "Welcome to the LLM Leaderboard API"}

@app.get("/api/leaderboard", response_model=LeaderboardData)
def get_leaderboard(refresh: bool = Query(False, description="Force refresh data from source")):
    """
    Get the full leaderboard data.
    If refresh is True, force fetch from source instead of using cache.
    """
    external_data = fetch_external_leaderboard_data(refresh=refresh)

    if external_data:
        # Process external data to match our expected format
        try:
            # Here you would transform the external data to match LeaderboardData model
            # This is a simplified example - you'd need to adapt this to the actual structure
            return external_data
        except Exception as e:
            print(f"Error processing external data: {e}")

    # Fall back to sample data if external data can't be processed
    return generate_sample_data()

@app.get("/api/models", response_model=List[str])
def get_models():
    """Get a list of all model names in the leaderboard"""
    data = fetch_external_leaderboard_data() or generate_sample_data()
    return [model["model_name"] for model in data["models"]]

@app.get("/api/model/{model_name}", response_model=LeaderboardModel)
def get_model_details(model_name: str):
    """Get detailed information about a specific model"""
    data = fetch_external_leaderboard_data() or generate_sample_data()

    for model in data["models"]:
        if model["model_name"] == model_name:
            return model

    raise HTTPException(status_code=404, detail=f"Model {model_name} not found")

@app.get("/api/filters")
def get_filter_counts():
    """
    Get counts for different filter categories to display in the UI.
    This matches what's shown in the 'Quick Filters' section of the leaderboard.
    """
    data = fetch_external_leaderboard_data() or generate_sample_data()

    # Count models by different categories
    edge_count = 0
    consumer_count = 0
    midrange_count = 0
    gpu_rich_count = 0
    official_count = 0

    for model in data["models"]:
        # Edge devices (typically small models)
        if "scores" in model and model["scores"].get("average", 0) < 45:
            edge_count += 1

        # Consumer (moderate size/performance)
        if "scores" in model and 45 <= model["scores"].get("average", 0) < 55:
            consumer_count += 1

        # Mid-range
        if "scores" in model and 55 <= model["scores"].get("average", 0) < 65:
            midrange_count += 1

        # GPU-rich (high-end models)
        if "scores" in model and model["scores"].get("average", 0) >= 65:
            gpu_rich_count += 1

        # Official providers
        # This is just a placeholder logic - adapt to your actual criteria
        if "/" not in model["model_name"] or model["model_name"].startswith("meta/") or model["model_name"].startswith("google/"):
            official_count += 1

    return {
        "edge_devices": edge_count,
        "consumers": consumer_count,
        "midrange": midrange_count,
        "gpu_rich": gpu_rich_count,
        "official_providers": official_count
    }

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)