Spaces:
Sleeping
Sleeping
File size: 9,139 Bytes
cce0ed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import json
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
import requests
from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
class LeaderboardModel(BaseModel):
model_name: str
type: str
model_link: Optional[str] = None
scores: Dict[str, float]
co2_cost: Optional[float] = None
class LeaderboardData(BaseModel):
models: List[LeaderboardModel]
updated_at: str
app = FastAPI(
title="LLM Leaderboard API",
description="API for serving Open LLM Leaderboard data",
version="1.0.0"
)
# Add CORS middleware to allow requests from your Gradio app
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # For production, specify your exact frontend URL
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Cache for leaderboard data
cached_data = None
cache_file = Path("leaderboard_cache.json")
def fetch_external_leaderboard_data(refresh: bool = False) -> Optional[Dict]:
"""
Fetch leaderboard data from external sources like HuggingFace.
Uses local cache if available and refresh is False.
"""
global cached_data
if not refresh and cached_data:
return cached_data
if not refresh and cache_file.exists():
try:
with open(cache_file) as f:
cached_data = json.load(f)
return cached_data
except:
pass # Fall back to fetching if cache read fails
try:
# Try different endpoints that might contain leaderboard data
endpoints = [
"https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/raw/main/leaderboard_data.json",
"https://huggingface.co/api/spaces/HuggingFaceH4/open_llm_leaderboard/api/get_results",
]
for url in endpoints:
response = requests.get(url)
if response.status_code == 200:
data = response.json()
cached_data = data
with open(cache_file, "w") as f:
json.dump(data, f)
return data
# If all endpoints fail, return None
return None
except Exception as e:
print(f"Error fetching external leaderboard data: {e}")
return None
def generate_sample_data() -> Dict:
"""
Generate sample leaderboard data when external data can't be fetched.
"""
models = [
{"model_name": "meta-llama/llama-3-70b-instruct", "type": "open"},
{"model_name": "mistralai/Mistral-7B-Instruct-v0.3", "type": "open"},
{"model_name": "google/gemma-7b-it", "type": "open"},
{"model_name": "Qwen/Qwen2-7B-Instruct", "type": "open"},
{"model_name": "anthropic/claude-3-opus", "type": "closed", "external_link": "https://www.anthropic.com/claude"},
{"model_name": "OpenAI/gpt-4o", "type": "closed", "external_link": "https://openai.com/gpt-4"},
{"model_name": "01-ai/Yi-1.5-34B-Chat", "type": "open"},
{"model_name": "google/gemma-2b", "type": "open"},
{"model_name": "microsoft/phi-3-mini-4k-instruct", "type": "open"},
{"model_name": "microsoft/phi-3-mini-128k-instruct", "type": "open"},
{"model_name": "stabilityai/stable-beluga-7b", "type": "open"},
{"model_name": "togethercomputer/RedPajama-INCITE-7B-Instruct", "type": "open"},
{"model_name": "databricks/dbrx-instruct", "type": "closed", "external_link": "https://www.databricks.com/product/machine-learning/large-language-models"},
{"model_name": "mosaicml/mpt-7b-instruct", "type": "open"},
{"model_name": "01-ai/Yi-1.5-9B-Chat", "type": "open"},
{"model_name": "anthropic/claude-3-sonnet", "type": "closed", "external_link": "https://www.anthropic.com/claude"},
{"model_name": "cohere/command-r-plus", "type": "closed", "external_link": "https://cohere.com/models/command-r-plus"},
{"model_name": "meta-llama/llama-3-8b-instruct", "type": "open"}
]
np.random.seed(42) # For reproducibility
model_data = []
for model_info in models:
model_name = model_info["model_name"]
model_type = model_info["type"]
external_link = model_info.get("external_link", None)
# Generate random scores
average = round(np.random.uniform(40, 90), 2)
ifeval = round(np.random.uniform(30, 90), 2)
bbhi = round(np.random.uniform(40, 85), 2)
math = round(np.random.uniform(20, 80), 2)
gpqa = round(np.random.uniform(10, 70), 2)
mujb = round(np.random.uniform(10, 70), 2)
mmlu = round(np.random.uniform(40, 85), 2)
co2_cost = round(np.random.uniform(1, 100), 2)
# If it's an open model, it should have a link to Hugging Face
model_link = None
if external_link:
model_link = external_link
elif "/" in model_name:
model_link = f"https://huggingface.co/{model_name}"
else:
model_link = f"https://huggingface.co/models?search={model_name}"
model_data.append({
"model_name": model_name,
"type": model_type,
"model_link": model_link,
"scores": {
"average": average,
"ifeval": ifeval,
"bbhi": bbhi,
"math": math,
"gpqa": gpqa,
"mujb": mujb,
"mmlu": mmlu
},
"co2_cost": co2_cost
})
# Sort by average score
model_data.sort(key=lambda x: x["scores"]["average"], reverse=True)
# Create the final data structure
from datetime import datetime
leaderboard_data = {
"models": model_data,
"updated_at": datetime.now().isoformat()
}
return leaderboard_data
@app.get("/")
def read_root():
return {"message": "Welcome to the LLM Leaderboard API"}
@app.get("/api/leaderboard", response_model=LeaderboardData)
def get_leaderboard(refresh: bool = Query(False, description="Force refresh data from source")):
"""
Get the full leaderboard data.
If refresh is True, force fetch from source instead of using cache.
"""
external_data = fetch_external_leaderboard_data(refresh=refresh)
if external_data:
# Process external data to match our expected format
try:
# Here you would transform the external data to match LeaderboardData model
# This is a simplified example - you'd need to adapt this to the actual structure
return external_data
except Exception as e:
print(f"Error processing external data: {e}")
# Fall back to sample data if external data can't be processed
return generate_sample_data()
@app.get("/api/models", response_model=List[str])
def get_models():
"""Get a list of all model names in the leaderboard"""
data = fetch_external_leaderboard_data() or generate_sample_data()
return [model["model_name"] for model in data["models"]]
@app.get("/api/model/{model_name}", response_model=LeaderboardModel)
def get_model_details(model_name: str):
"""Get detailed information about a specific model"""
data = fetch_external_leaderboard_data() or generate_sample_data()
for model in data["models"]:
if model["model_name"] == model_name:
return model
raise HTTPException(status_code=404, detail=f"Model {model_name} not found")
@app.get("/api/filters")
def get_filter_counts():
"""
Get counts for different filter categories to display in the UI.
This matches what's shown in the 'Quick Filters' section of the leaderboard.
"""
data = fetch_external_leaderboard_data() or generate_sample_data()
# Count models by different categories
edge_count = 0
consumer_count = 0
midrange_count = 0
gpu_rich_count = 0
official_count = 0
for model in data["models"]:
# Edge devices (typically small models)
if "scores" in model and model["scores"].get("average", 0) < 45:
edge_count += 1
# Consumer (moderate size/performance)
if "scores" in model and 45 <= model["scores"].get("average", 0) < 55:
consumer_count += 1
# Mid-range
if "scores" in model and 55 <= model["scores"].get("average", 0) < 65:
midrange_count += 1
# GPU-rich (high-end models)
if "scores" in model and model["scores"].get("average", 0) >= 65:
gpu_rich_count += 1
# Official providers
# This is just a placeholder logic - adapt to your actual criteria
if "/" not in model["model_name"] or model["model_name"].startswith("meta/") or model["model_name"].startswith("google/"):
official_count += 1
return {
"edge_devices": edge_count,
"consumers": consumer_count,
"midrange": midrange_count,
"gpu_rich": gpu_rich_count,
"official_providers": official_count
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|