Spaces:
Sleeping
Sleeping
File size: 10,951 Bytes
cce0ed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import pandas as pd
import requests
from urllib.parse import quote
import subprocess
import os
import time
import sys
from datetime import datetime
import gradio as gr
def style_dataframe(df):
if len(df) == 0:
return df
# Define the columns to highlight based on the screenshot
highlight_cols = ["Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO"]
# Initialize the styler
styled = df.style
# Function to create gradient background based on value
def highlight_green(val):
try:
# Extract numeric value from string (remove % if present)
val_float = float(str(val).replace('%', '').replace(' kg', ''))
# Create gradient background filling based on the value percentage
# Use the exact colors from the example
return f'background: linear-gradient(90deg, rgba(46, 125, 50, 0.5) {val_float}%, rgba(46, 125, 50, 0.1) {val_float}%); color: white;'
except:
return 'background-color: #121212; color: white;'
# Apply the highlighting to performance metric columns
for col in highlight_cols:
styled = styled.applymap(highlight_green, subset=[col])
styled = styled.set_properties(
subset=["Model"],
**{'color': '#4da6ff'}
)
return styled
def increment_counter(counter):
return counter + 1
def handle_select(evt: gr.SelectData, counter):
return counter + 1, f"{evt.index}", f"{evt.value}"
def start_api_server():
api_process = subprocess.Popen(
[sys.executable, "api.py"],
cwd=os.path.dirname(os.path.abspath(__file__))
)
# Give the API server a moment to start
time.sleep(2)
return api_process
def apply_filters(filters, models_data):
if not filters or len(filters) == 0:
# No filters selected, return all data
return models_data
filtered_models = []
for model in models_data:
scores = model.get("scores", {})
average_score = scores.get("average", 0)
model_name = model.get("model_name", "")
# Check which filters are selected and apply them
should_include = False
for filter_option in filters:
if "Edge Devices" in filter_option and average_score < 45 or "Consumers" in filter_option and 45 <= average_score < 55 or "Mid-range" in filter_option and 55 <= average_score < 65 or "GPU-rich" in filter_option and average_score >= 65 or "Official Providers" in filter_option and ("/" not in model_name or
model_name.startswith("meta/") or
model_name.startswith("google/") or
model_name.startswith("openai/") or
model_name.startswith("microsoft/")):
should_include = True
break
if should_include:
filtered_models.append(model)
return filtered_models
def format_timestamp(timestamp_str):
try:
# Parse ISO format timestamp
# Try to parse ISO format with timezone
try:
dt = datetime.fromisoformat(timestamp_str)
except:
# Fallback for different timestamp formats
dt = datetime.strptime(timestamp_str, "%Y-%m-%dT%H:%M:%S.%f")
# Format nicely for display
return dt.strftime("%B %d, %Y at %I:%M %p")
except Exception as e:
print(f"Error formatting timestamp: {e}")
return timestamp_str
def create_leaderboard_data(selected_filters=None):
try:
response = requests.get("http://localhost:8000/api/leaderboard")
if response.status_code == 200:
data = response.json()
models_data = data.get("models", [])
updated_at = data.get("updated_at", "Unknown")
formatted_time = format_timestamp(updated_at)
# Apply filters if any are selected
if selected_filters:
models_data = apply_filters(selected_filters, models_data)
rows = []
for i, model in enumerate(models_data, 1):
model_name = model["model_name"]
model_type = model["type"]
scores = model["scores"]
co2_cost = model.get("co2_cost", "N/A")
# Only use green for open and red for closed
emoji = "馃煝" if model_type.lower() == "open" else "馃敶"
type_with_emoji = f"{emoji} {model_type.upper()}"
# Use model_link from API if available, otherwise create one
if "model_link" in model and model["model_link"]:
model_link = f"[{model_name}]({model['model_link']})"
# Format model name with link
elif "/" in model_name:
org, name = model_name.split("/", 1)
model_link = f"[{model_name}](https://huggingface.co/{quote(model_name)})"
else:
model_link = f"[{model_name}](https://huggingface.co/models?search={quote(model_name)})"
rows.append([
i, # Rank
type_with_emoji,
model_link,
f"{scores.get('average', 0):.2f}",
f"{scores.get('ifeval', 0):.2f}",
f"{scores.get('bbhi', 0):.2f}",
f"{scores.get('math', 0):.2f}",
f"{scores.get('gpqa', 0):.2f}",
f"{scores.get('mujb', 0):.2f}",
f"{scores.get('mmlu', 0):.2f}",
f"{co2_cost}" if isinstance(co2_cost, (int, float)) else co2_cost
])
df = pd.DataFrame(rows, columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
styled_df = style_dataframe(df)
return styled_df, formatted_time
else:
# Return an empty dataframe with proper columns if API fails
empty_df = pd.DataFrame(columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
return empty_df, "Unknown"
except Exception as e:
print(f"Error fetching leaderboard data: {e}")
# Return an empty dataframe with proper columns if API fails
empty_df = pd.DataFrame(columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
return empty_df, "Unknown"
def load_svg(file_path="hf.svg"):
with open(file_path) as f:
svg_content = f.read()
return svg_content
def get_filter_data():
try:
response = requests.get("http://localhost:8000/api/filters")
if response.status_code == 200:
filter_data = response.json()
return [
f"For Edge Devices 路 {filter_data.get('edge_devices', 0)}",
f"For Consumers 路 {filter_data.get('consumers', 0)}",
f"Mid-range 路 {filter_data.get('midrange', 0)}",
f"For the GPU-rich 路 {filter_data.get('gpu_rich', 0)}",
f"Only Official Providers 路 {filter_data.get('official_providers', 0)}"
]
else:
return [
"For Edge Devices 路 0",
"For Consumers 路 0",
"Mid-range 路 0",
"For the GPU-rich 路 0",
"Only Official Providers 路 0"
]
except Exception as e:
print(f"Error fetching filter data: {e}")
return [
"For Edge Devices 路 0",
"For Consumers 路 0",
"Mid-range 路 0",
"For the GPU-rich 路 0",
"Only Official Providers 路 0"
]
def refresh_leaderboard(selected_filters=None):
try:
# Request a refresh from the API
requests.get("http://localhost:8000/api/leaderboard?refresh=true")
# Get updated data
df, timestamp = create_leaderboard_data(selected_filters)
filter_choices = get_filter_data()
return df, filter_choices, f"Last updated: {timestamp}"
except Exception as e:
print(f"Error refreshing data: {e}")
return None, None, "Error refreshing data"
def update_table(filters):
df, timestamp = create_leaderboard_data(filters)
return df, f"Last updated: {timestamp}"
def load_css(file_path="style.css"):
try:
current_dir = os.path.dirname(os.path.abspath(__file__))
css_path = os.path.join(current_dir, file_path)
with open(css_path) as f:
css_content = f.read()
return css_content
except Exception as e:
print(f"Error loading CSS file: {e}")
# Return a basic CSS if file not found
return """
.dataframe-container {
border-radius: 8px;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
}
"""
with gr.Blocks(css=load_css()) as demo:
df, timestamp = create_leaderboard_data()
with gr.Row():
svg_content = load_svg()
gr.HTML(svg_content)
gr.HTML("""
<div style="display: flex; align-items: center; justify-content: center; margin-bottom: 10px;">
<div class="leaderboard-title">Open LLM Leaderboard</div>
</div>
<div class="leaderboard-subtitle">Comparing Large Language Models in an open and reproducible way</div>
""")
status_text = gr.HTML(f"""<div style="text-align: center; margin-bottom: 10px;">Last updated: {timestamp}</div>""")
with gr.Row(elem_classes="filters-container"):
filter_choices = get_filter_data()
filters = gr.CheckboxGroup(
label="Quick Filters",
choices=filter_choices,
)
# Create and display the dataframe
leaderboard_table = gr.Dataframe(
value=df,
headers=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"],
datatype=["number", "str", "markdown", "str", "str", "str", "str", "str", "str", "str", "str"],
elem_id="leaderboard-table",
elem_classes="dataframe-container",
interactive=False,
max_height=600,
show_search="search",
show_copy_button=True,
show_fullscreen_button=True,
pinned_columns=2,
column_widths=["5%", "10%", "35%", "7%", "7%", "7%", "7%", "7%", "7%", "7%", "6%"]
)
refresh_btn = gr.Button("Refresh Data", elem_classes="refresh-btn")
refresh_btn.click(refresh_leaderboard, inputs=[filters], outputs=[leaderboard_table, filters, status_text])
filters.change(update_table, inputs=[filters], outputs=[leaderboard_table, status_text])
if __name__ == "__main__":
api_process = start_api_server()
demo.launch()
api_process.terminate()
|