File size: 10,951 Bytes
cce0ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import pandas as pd
import requests
from urllib.parse import quote
import subprocess
import os
import time
import sys
from datetime import datetime

import gradio as gr

def style_dataframe(df):
    if len(df) == 0:
        return df

    # Define the columns to highlight based on the screenshot
    highlight_cols = ["Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO"]

    # Initialize the styler
    styled = df.style

    # Function to create gradient background based on value
    def highlight_green(val):
        try:
            # Extract numeric value from string (remove % if present)
            val_float = float(str(val).replace('%', '').replace(' kg', ''))

            # Create gradient background filling based on the value percentage
            # Use the exact colors from the example
            return f'background: linear-gradient(90deg, rgba(46, 125, 50, 0.5) {val_float}%, rgba(46, 125, 50, 0.1) {val_float}%); color: white;'
        except:
            return 'background-color: #121212; color: white;'

    # Apply the highlighting to performance metric columns
    for col in highlight_cols:
        styled = styled.applymap(highlight_green, subset=[col])

    styled = styled.set_properties(
        subset=["Model"],
        **{'color': '#4da6ff'}
    )

    return styled

def increment_counter(counter):
    return counter + 1

def handle_select(evt: gr.SelectData, counter):
    return counter + 1, f"{evt.index}", f"{evt.value}"

def start_api_server():
    api_process = subprocess.Popen(
        [sys.executable, "api.py"],
        cwd=os.path.dirname(os.path.abspath(__file__))
    )
    # Give the API server a moment to start
    time.sleep(2)
    return api_process

def apply_filters(filters, models_data):
    if not filters or len(filters) == 0:
        # No filters selected, return all data
        return models_data

    filtered_models = []

    for model in models_data:
        scores = model.get("scores", {})
        average_score = scores.get("average", 0)
        model_name = model.get("model_name", "")

        # Check which filters are selected and apply them
        should_include = False
        for filter_option in filters:
            if "Edge Devices" in filter_option and average_score < 45 or "Consumers" in filter_option and 45 <= average_score < 55 or "Mid-range" in filter_option and 55 <= average_score < 65 or "GPU-rich" in filter_option and average_score >= 65 or "Official Providers" in filter_option and ("/" not in model_name or
                                                           model_name.startswith("meta/") or
                                                           model_name.startswith("google/") or
                                                           model_name.startswith("openai/") or
                                                           model_name.startswith("microsoft/")):
                should_include = True
                break

        if should_include:
            filtered_models.append(model)

    return filtered_models

def format_timestamp(timestamp_str):
    try:
        # Parse ISO format timestamp

        # Try to parse ISO format with timezone
        try:
            dt = datetime.fromisoformat(timestamp_str)
        except:
            # Fallback for different timestamp formats
            dt = datetime.strptime(timestamp_str, "%Y-%m-%dT%H:%M:%S.%f")

        # Format nicely for display
        return dt.strftime("%B %d, %Y at %I:%M %p")
    except Exception as e:
        print(f"Error formatting timestamp: {e}")
        return timestamp_str

def create_leaderboard_data(selected_filters=None):
    try:
        response = requests.get("http://localhost:8000/api/leaderboard")
        if response.status_code == 200:
            data = response.json()
            models_data = data.get("models", [])
            updated_at = data.get("updated_at", "Unknown")
            formatted_time = format_timestamp(updated_at)

            # Apply filters if any are selected
            if selected_filters:
                models_data = apply_filters(selected_filters, models_data)

            rows = []
            for i, model in enumerate(models_data, 1):
                model_name = model["model_name"]
                model_type = model["type"]
                scores = model["scores"]
                co2_cost = model.get("co2_cost", "N/A")

                # Only use green for open and red for closed
                emoji = "馃煝" if model_type.lower() == "open" else "馃敶"
                type_with_emoji = f"{emoji} {model_type.upper()}"

                # Use model_link from API if available, otherwise create one
                if "model_link" in model and model["model_link"]:
                    model_link = f"[{model_name}]({model['model_link']})"
                # Format model name with link
                elif "/" in model_name:
                    org, name = model_name.split("/", 1)
                    model_link = f"[{model_name}](https://huggingface.co/{quote(model_name)})"
                else:
                    model_link = f"[{model_name}](https://huggingface.co/models?search={quote(model_name)})"

                rows.append([
                    i,  # Rank
                    type_with_emoji,
                    model_link,
                    f"{scores.get('average', 0):.2f}",
                    f"{scores.get('ifeval', 0):.2f}",
                    f"{scores.get('bbhi', 0):.2f}",
                    f"{scores.get('math', 0):.2f}",
                    f"{scores.get('gpqa', 0):.2f}",
                    f"{scores.get('mujb', 0):.2f}",
                    f"{scores.get('mmlu', 0):.2f}",
                    f"{co2_cost}" if isinstance(co2_cost, (int, float)) else co2_cost
                ])

            df = pd.DataFrame(rows, columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
            styled_df = style_dataframe(df)
            return styled_df, formatted_time
        else:
            # Return an empty dataframe with proper columns if API fails
            empty_df = pd.DataFrame(columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
            return empty_df, "Unknown"
    except Exception as e:
        print(f"Error fetching leaderboard data: {e}")
        # Return an empty dataframe with proper columns if API fails
        empty_df = pd.DataFrame(columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
        return empty_df, "Unknown"

def load_svg(file_path="hf.svg"):
        with open(file_path) as f:
            svg_content = f.read()
        return svg_content

def get_filter_data():
    try:
        response = requests.get("http://localhost:8000/api/filters")
        if response.status_code == 200:
            filter_data = response.json()
            return [
                f"For Edge Devices 路 {filter_data.get('edge_devices', 0)}",
                f"For Consumers 路 {filter_data.get('consumers', 0)}",
                f"Mid-range 路 {filter_data.get('midrange', 0)}",
                f"For the GPU-rich 路 {filter_data.get('gpu_rich', 0)}",
                f"Only Official Providers 路 {filter_data.get('official_providers', 0)}"
            ]
        else:
            return [
                "For Edge Devices 路 0",
                "For Consumers 路 0",
                "Mid-range 路 0",
                "For the GPU-rich 路 0",
                "Only Official Providers 路 0"
            ]
    except Exception as e:
        print(f"Error fetching filter data: {e}")
        return [
            "For Edge Devices 路 0",
            "For Consumers 路 0",
            "Mid-range 路 0",
            "For the GPU-rich 路 0",
            "Only Official Providers 路 0"
        ]

def refresh_leaderboard(selected_filters=None):
    try:
        # Request a refresh from the API
        requests.get("http://localhost:8000/api/leaderboard?refresh=true")
        # Get updated data
        df, timestamp = create_leaderboard_data(selected_filters)
        filter_choices = get_filter_data()
        return df, filter_choices, f"Last updated: {timestamp}"
    except Exception as e:
        print(f"Error refreshing data: {e}")
        return None, None, "Error refreshing data"

def update_table(filters):
    df, timestamp = create_leaderboard_data(filters)
    return df, f"Last updated: {timestamp}"

def load_css(file_path="style.css"):
    try:
        current_dir = os.path.dirname(os.path.abspath(__file__))
        css_path = os.path.join(current_dir, file_path)
        with open(css_path) as f:
            css_content = f.read()
        return css_content
    except Exception as e:
        print(f"Error loading CSS file: {e}")
        # Return a basic CSS if file not found
        return """
        .dataframe-container {
            border-radius: 8px;
            box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
        }
        """

with gr.Blocks(css=load_css()) as demo:
    df, timestamp = create_leaderboard_data()

    with gr.Row():
        svg_content = load_svg()
        gr.HTML(svg_content)
    gr.HTML("""
        <div style="display: flex; align-items: center; justify-content: center; margin-bottom: 10px;">
            <div class="leaderboard-title">Open LLM Leaderboard</div>
        </div>
        <div class="leaderboard-subtitle">Comparing Large Language Models in an open and reproducible way</div>
    """)
    status_text = gr.HTML(f"""<div style="text-align: center; margin-bottom: 10px;">Last updated: {timestamp}</div>""")

    with gr.Row(elem_classes="filters-container"):
        filter_choices = get_filter_data()
        filters = gr.CheckboxGroup(
            label="Quick Filters",
            choices=filter_choices,
        )

    # Create and display the dataframe

    leaderboard_table = gr.Dataframe(
        value=df,
        headers=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"],
        datatype=["number", "str", "markdown", "str", "str", "str", "str", "str", "str", "str", "str"],
        elem_id="leaderboard-table",
        elem_classes="dataframe-container",
        interactive=False,
        max_height=600,
        show_search="search",
        show_copy_button=True,
        show_fullscreen_button=True,
        pinned_columns=2,
        column_widths=["5%", "10%", "35%", "7%", "7%", "7%", "7%", "7%", "7%", "7%", "6%"]
    )

    refresh_btn = gr.Button("Refresh Data", elem_classes="refresh-btn")
    refresh_btn.click(refresh_leaderboard, inputs=[filters], outputs=[leaderboard_table, filters, status_text])

    filters.change(update_table, inputs=[filters], outputs=[leaderboard_table, status_text])

if __name__ == "__main__":
    api_process = start_api_server()
    demo.launch()
    api_process.terminate()