Spaces:
Running
Running
Hannah
commited on
Commit
·
f0ad9ed
1
Parent(s):
ff17adc
not initial
Browse files
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from urllib.parse import quote
|
5 |
+
|
6 |
+
def style_dataframe(df):
|
7 |
+
if len(df) == 0:
|
8 |
+
return df
|
9 |
+
|
10 |
+
highlight_cols = ["Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO"]
|
11 |
+
styled = df.style
|
12 |
+
|
13 |
+
def highlight_green(val):
|
14 |
+
try:
|
15 |
+
val_float = float(str(val).replace('%', '').replace(' kg', ''))
|
16 |
+
return f'background: linear-gradient(90deg, rgba(46, 125, 50, 0.5) {val_float}%, rgba(46, 125, 50, 0.1) {val_float}%); color: white;'
|
17 |
+
except:
|
18 |
+
return 'background-color: #121212; color: white;'
|
19 |
+
|
20 |
+
for col in highlight_cols:
|
21 |
+
styled = styled.applymap(highlight_green, subset=[col])
|
22 |
+
|
23 |
+
styled = styled.set_properties(
|
24 |
+
subset=["Model"],
|
25 |
+
**{'color': '#4da6ff'}
|
26 |
+
)
|
27 |
+
|
28 |
+
return styled
|
29 |
+
|
30 |
+
def create_leaderboard_data():
|
31 |
+
models = [
|
32 |
+
{"model_name": "meta-llama/llama-3-70b-instruct", "type": "open"},
|
33 |
+
{"model_name": "mistralai/Mistral-7B-Instruct-v0.3", "type": "open"},
|
34 |
+
{"model_name": "google/gemma-7b-it", "type": "open"},
|
35 |
+
{"model_name": "Qwen/Qwen2-7B-Instruct", "type": "open"},
|
36 |
+
{"model_name": "anthropic/claude-3-opus", "type": "closed"},
|
37 |
+
{"model_name": "OpenAI/gpt-4o", "type": "closed"},
|
38 |
+
{"model_name": "01-ai/Yi-1.5-34B-Chat", "type": "open"},
|
39 |
+
{"model_name": "google/gemma-2b", "type": "open"},
|
40 |
+
{"model_name": "microsoft/phi-3-mini-4k-instruct", "type": "open"},
|
41 |
+
{"model_name": "microsoft/phi-3-mini-128k-instruct", "type": "open"},
|
42 |
+
{"model_name": "stabilityai/stable-beluga-7b", "type": "open"},
|
43 |
+
{"model_name": "togethercomputer/RedPajama-INCITE-7B-Instruct", "type": "open"},
|
44 |
+
{"model_name": "databricks/dbrx-instruct", "type": "closed"},
|
45 |
+
{"model_name": "mosaicml/mpt-7b-instruct", "type": "open"},
|
46 |
+
{"model_name": "01-ai/Yi-1.5-9B-Chat", "type": "open"}
|
47 |
+
]
|
48 |
+
|
49 |
+
np.random.seed(42)
|
50 |
+
|
51 |
+
rows = []
|
52 |
+
for i, model in enumerate(models, 1):
|
53 |
+
model_name = model["model_name"]
|
54 |
+
model_type = model["type"]
|
55 |
+
|
56 |
+
emoji = "🟢" if model_type.lower() == "open" else "🔴"
|
57 |
+
type_with_emoji = f"{emoji} {model_type.upper()}"
|
58 |
+
|
59 |
+
if "/" in model_name:
|
60 |
+
org, name = model_name.split("/", 1)
|
61 |
+
model_link = f"[{model_name}](https://huggingface.co/{quote(model_name)})"
|
62 |
+
else:
|
63 |
+
model_link = f"[{model_name}](https://huggingface.co/models?search={quote(model_name)})"
|
64 |
+
|
65 |
+
average = round(np.random.uniform(40, 90), 2)
|
66 |
+
ifeval = round(np.random.uniform(30, 90), 2)
|
67 |
+
bbhi = round(np.random.uniform(40, 85), 2)
|
68 |
+
math = round(np.random.uniform(20, 80), 2)
|
69 |
+
gpqa = round(np.random.uniform(10, 70), 2)
|
70 |
+
mujb = round(np.random.uniform(10, 70), 2)
|
71 |
+
mmlu = round(np.random.uniform(40, 85), 2)
|
72 |
+
co2_cost = round(np.random.uniform(1, 100), 2)
|
73 |
+
|
74 |
+
rows.append([
|
75 |
+
i,
|
76 |
+
type_with_emoji,
|
77 |
+
model_link,
|
78 |
+
f"{average}",
|
79 |
+
f"{ifeval}",
|
80 |
+
f"{bbhi}",
|
81 |
+
f"{math}",
|
82 |
+
f"{gpqa}",
|
83 |
+
f"{mujb}",
|
84 |
+
f"{mmlu}",
|
85 |
+
f"{co2_cost} kg"
|
86 |
+
])
|
87 |
+
|
88 |
+
rows.sort(key=lambda x: float(x[3]), reverse=True)
|
89 |
+
|
90 |
+
for i, row in enumerate(rows, 1):
|
91 |
+
row[0] = i
|
92 |
+
|
93 |
+
df = pd.DataFrame(rows, columns=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"])
|
94 |
+
return style_dataframe(df)
|
95 |
+
|
96 |
+
def get_filter_data():
|
97 |
+
return {
|
98 |
+
"For Edge Devices": 5,
|
99 |
+
"For Consumers": 4,
|
100 |
+
"Mid-range": 4,
|
101 |
+
"For the GPU-rich": 3,
|
102 |
+
"Only Official Providers": 8
|
103 |
+
}
|
104 |
+
|
105 |
+
css = """
|
106 |
+
.html-container {
|
107 |
+
text-align: center;
|
108 |
+
display: flex;
|
109 |
+
justify-content: center;
|
110 |
+
width: 100%;
|
111 |
+
}
|
112 |
+
|
113 |
+
.dataframe-container {
|
114 |
+
margin-top: 0.5rem;
|
115 |
+
margin-bottom: 0.5rem;
|
116 |
+
}
|
117 |
+
|
118 |
+
.leaderboard-title {
|
119 |
+
font-size: 1.5rem;
|
120 |
+
font-weight: bold;
|
121 |
+
margin-bottom: 0.25rem;
|
122 |
+
color: #f0f0f0;
|
123 |
+
}
|
124 |
+
|
125 |
+
.leaderboard-subtitle {
|
126 |
+
font-size: 0.9rem;
|
127 |
+
margin-bottom: 1rem;
|
128 |
+
color: #a0a0a0;
|
129 |
+
}
|
130 |
+
|
131 |
+
.filters-container {
|
132 |
+
margin-bottom: 0.5rem;
|
133 |
+
}
|
134 |
+
"""
|
135 |
+
|
136 |
+
filter_data = get_filter_data()
|
137 |
+
filter_choices = [f"{key} · {value}" for key, value in filter_data.items()]
|
138 |
+
|
139 |
+
with gr.Blocks(css=css) as demo:
|
140 |
+
gr.HTML("""
|
141 |
+
<div style="display: flex; align-items: center; justify-content: center; margin-bottom: 10px;">
|
142 |
+
<div class="leaderboard-title">Open LLM Leaderboard</div>
|
143 |
+
</div>
|
144 |
+
<div class="leaderboard-subtitle">Comparing Large Language Models in an open and reproducible way</div>
|
145 |
+
""")
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
filters = gr.CheckboxGroup(
|
149 |
+
label="Quick Filters",
|
150 |
+
choices=filter_choices,
|
151 |
+
)
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
status_text = gr.HTML("<div style='text-align: right; color: #888; font-size: 0.8rem;'>Last updated: June 25, 2024 at 10:30 AM</div>")
|
155 |
+
|
156 |
+
leaderboard_df = create_leaderboard_data()
|
157 |
+
leaderboard_table = gr.Dataframe(
|
158 |
+
value=leaderboard_df,
|
159 |
+
headers=["Rank", "Type", "Model", "Average", "IFEval", "BBHI", "MATH", "GPQA", "MUJB", "MMLU-PRO", "CO_Cost"],
|
160 |
+
datatype=["number", "str", "markdown", "str", "str", "str", "str", "str", "str", "str", "str"],
|
161 |
+
elem_id="leaderboard-table",
|
162 |
+
interactive=False,
|
163 |
+
max_height=600,
|
164 |
+
show_search="search",
|
165 |
+
show_copy_button=True,
|
166 |
+
show_fullscreen_button=True,
|
167 |
+
pinned_columns=2,
|
168 |
+
column_widths=["5%", "7%", "35%", "7%", "7%", "7%", "7%", "7%", "7%", "7%", "6%"]
|
169 |
+
)
|
170 |
+
|
171 |
+
refresh_btn = gr.Button("Refresh Data")
|
172 |
+
refresh_btn.click(fn=lambda: create_leaderboard_data(), outputs=leaderboard_table)
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
demo.launch()
|
hf.svg
ADDED
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=3.50.0
|
2 |
+
numpy>=1.20.0
|
3 |
+
pandas>=1.3.0
|
4 |
+
pillow>=8.0,<12.0
|
5 |
+
pydub
|
6 |
+
pyyaml>=5.0,<7.0
|
7 |
+
python-multipart>=0.0.18
|
8 |
+
typing_extensions~=4.0
|
style.css
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.html-container {
|
2 |
+
text-align: center;
|
3 |
+
display: flex;
|
4 |
+
justify-content: center;
|
5 |
+
width: 100%;
|
6 |
+
}
|
7 |
+
|
8 |
+
.dataframe-container {
|
9 |
+
margin-top: 0.5rem;
|
10 |
+
margin-bottom: 0.5rem;
|
11 |
+
}
|
12 |
+
|
13 |
+
.leaderboard-title {
|
14 |
+
font-size: 1.5rem;
|
15 |
+
font-weight: bold;
|
16 |
+
margin-bottom: 0.25rem;
|
17 |
+
color: #f0f0f0;
|
18 |
+
}
|
19 |
+
|
20 |
+
.leaderboard-subtitle {
|
21 |
+
font-size: 0.9rem;
|
22 |
+
margin-bottom: 1rem;
|
23 |
+
color: #a0a0a0;
|
24 |
+
}
|
25 |
+
|
26 |
+
.filters-container fieldset {
|
27 |
+
display: flex;
|
28 |
+
flex-direction: row;
|
29 |
+
justify-content: center;
|
30 |
+
align-items: center;
|
31 |
+
gap: 0.5rem;
|
32 |
+
}
|
33 |
+
|
34 |
+
.refresh-btn {
|
35 |
+
margin-top: 0.5rem;
|
36 |
+
}
|
37 |
+
|
38 |
+
.status-container {
|
39 |
+
display: flex;
|
40 |
+
justify-content: flex-end;
|
41 |
+
font-size: 0.75rem;
|
42 |
+
color: #a0a0a0;
|
43 |
+
}
|
44 |
+
|