CSVBot-Llama2 / app.py
hmrizal's picture
microsoft/phi4-mini-instruct
81f0d23 verified
raw
history blame
13.9 kB
import gradio as gr
import os
import uuid
import threading
import pandas as pd
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Global model cache
MODEL_CACHE = {
"model": None,
"tokenizer": None,
"init_lock": threading.Lock()
}
# Create directories for user data
os.makedirs("user_data", exist_ok=True)
def initialize_model_once():
"""Initialize Phi-4-mini model once"""
with MODEL_CACHE["init_lock"]:
if MODEL_CACHE["model"] is None:
# Load Phi-4-mini model
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained("microsoft/Phi-4-mini-instruct")
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-4-mini-instruct",
torch_dtype=torch.float16,
device_map="auto"
)
return MODEL_CACHE["model"], MODEL_CACHE["tokenizer"]
def generate_pandas_code(prompt, max_new_tokens=512):
"""Generate Python code using the Phi-4-mini model"""
model, tokenizer = initialize_model_once()
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.2,
top_p=0.9,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated part, removing the input prompt
generated_text = response[len(tokenizer.decode(inputs.input_ids[0], skip_special_tokens=True)):]
# Extract code between ```python and ``` if present
import re
code_match = re.search(r'```python\s*(.*?)\s*```', generated_text, re.DOTALL)
if code_match:
return code_match.group(1).strip()
else:
# Return the raw generated text as fallback
return generated_text.strip()
class ChatBot:
def __init__(self, session_id):
self.session_id = session_id
self.csv_info = None
self.df = None
self.chat_history = []
self.user_dir = f"user_data/{session_id}"
os.makedirs(self.user_dir, exist_ok=True)
def process_file(self, file):
if file is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle file from Gradio
file_path = file.name if hasattr(file, 'name') else str(file)
file_name = os.path.basename(file_path)
# Load and save CSV directly with pandas
try:
self.df = pd.read_csv(file_path)
user_file_path = f"{self.user_dir}/uploaded.csv"
self.df.to_csv(user_file_path, index=False)
# Store CSV info
self.csv_info = {
"filename": file_name,
"rows": self.df.shape[0],
"columns": self.df.shape[1],
"column_names": self.df.columns.tolist(),
}
print(f"CSV verified: {self.df.shape[0]} rows, {len(self.df.columns)} columns")
except Exception as e:
return f"Error membaca CSV: {str(e)}"
# Add file info to chat history
file_info = f"CSV berhasil dimuat: {file_name} dengan {self.df.shape[0]} baris dan {len(self.df.columns)} kolom. Kolom: {', '.join(self.df.columns.tolist())}"
self.chat_history.append(("System", file_info))
return f"File CSV '{file_name}' berhasil diproses! Anda dapat mulai mengajukan pertanyaan tentang data."
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error pemrosesan file: {str(e)}"
def execute_query(self, code):
"""Safely execute pandas code"""
try:
# Create local context with the dataframe
local_vars = {"df": self.df, "pd": pd, "np": np}
# Execute code with timeout
exec(code, {"pd": pd, "np": np}, local_vars)
# Get result
if "result" in local_vars:
return local_vars["result"]
else:
# If no result variable, find the last variable created
last_var = None
for var_name, var_value in local_vars.items():
if var_name not in ["df", "pd", "np"] and var_name != "__builtins__":
last_var = var_value
if last_var is not None:
return last_var
else:
return self.df # Return the dataframe as default
except Exception as e:
raise Exception(f"Gagal menjalankan kode: {str(e)}")
def chat(self, message, history):
if self.df is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle common metadata questions directly to save resources
message_lower = message.lower()
if "nama file" in message_lower:
return f"Nama file CSV adalah: {self.csv_info['filename']}"
elif "nama kolom" in message_lower:
return f"Kolom dalam CSV: {', '.join(self.csv_info['column_names'])}"
elif "jumlah baris" in message_lower or "berapa baris" in message_lower:
return f"Jumlah baris dalam CSV: {self.csv_info['rows']}"
elif "jumlah kolom" in message_lower or "berapa kolom" in message_lower:
return f"Jumlah kolom dalam CSV: {self.csv_info['columns']}"
# Get sample data for context
sample_df = self.df.head(5)
sample_str = sample_df.to_string()
data_types = {col: str(dtype) for col, dtype in self.df.dtypes.items()}
# Create prompt for LLM
prompt = f"""
You are a data analyst that translates natural language questions into Python pandas code.
DataFrame information:
- Column names: {', '.join(self.csv_info['column_names'])}
- Data types: {data_types}
- Number of rows: {self.csv_info['rows']}
- Sample data:
{sample_str}
User question: {message}
Write a short Python code using pandas to answer the user's question.
The code must use the 'df' variable as the DataFrame name.
The code should assign the final result to a variable named 'result'.
Only return the Python code without any explanation.
```python
"""
# Generate code with Phi-4
try:
code = generate_pandas_code(prompt)
# Add result variable if not present
if not any(line.strip().startswith("result =") for line in code.split("\n")):
if code.startswith("df."):
code = "result = " + code
elif not "result" in code:
code = "result = " + code
except Exception as e:
print(f"Error generating code: {str(e)}")
# Fallback for basic questions
if "rata-rata" in message_lower or "mean" in message_lower:
code = "result = df.describe()"
elif "jumlah" in message_lower or "count" in message_lower:
code = "result = df.count()"
else:
return f"Maaf, saya tidak dapat menghasilkan kode untuk pertanyaan ini. Error: {str(e)}"
# Execute the code and get result
try:
print(f"Executing code: {code}")
result = self.execute_query(code)
# Check if result is relevant to the question
if result is None or (isinstance(result, pd.DataFrame) and result.empty):
return "Maaf, kita tidak bisa mendapatkan informasi terkait pertanyaan anda di dalam file CSV anda."
# Format result based on its type
if isinstance(result, pd.DataFrame):
if len(result) > 5:
result_str = result.head(5).to_string() + f"\n\n[Total {len(result)} baris]"
else:
result_str = result.to_string()
elif isinstance(result, (pd.Series, np.ndarray)):
if len(result) > 10:
result_str = str(result[:10]) + f"\n\n[Total {len(result)} item]"
else:
result_str = str(result)
elif hasattr(result, "__len__") and not isinstance(result, (str, int, float)):
result_str = str(result)
if len(result) > 0:
result_str += f"\n\n[Total {len(result)} item]"
else:
result_str = str(result)
# Format response
response = f"Hasil analisis:\n\n{result_str}\n\nKode yang dijalankan:\n```python\n{code}\n```"
self.chat_history.append((message, response))
return response
except Exception as e:
return f"Error saat menganalisis data: {str(e)}\n\nKode yang dicoba:\n```python\n{code}\n```"
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error: {str(e)}"
# UI Code (sama seperti sebelumnya)
def create_gradio_interface():
with gr.Blocks(title="CSV Data Analyzer") as interface:
session_id = gr.State(lambda: str(uuid.uuid4()))
chatbot_state = gr.State(lambda: None)
gr.HTML("<h1 style='text-align: center;'>CSV Data Analyzer</h1>")
gr.HTML("<h3 style='text-align: center;'>Ajukan pertanyaan tentang data CSV Anda</h3>")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV Anda",
file_types=[".csv"]
)
process_button = gr.Button("Proses CSV")
with gr.Accordion("Contoh Pertanyaan", open=False):
gr.Markdown("""
- "Berapa jumlah data yang memiliki nilai Glucose di atas 150?"
- "Hitung nilai rata-rata setiap kolom numerik"
- "Berapa banyak data untuk setiap kelompok dalam kolom Outcome?"
- "Berapa jumlah baris dalam dataset ini?"
- "Berapa jumlah kolom dalam dataset ini?"
""")
with gr.Column(scale=2):
chatbot_interface = gr.Chatbot(
label="Riwayat Chat",
height=400
)
message_input = gr.Textbox(
label="Ketik pertanyaan Anda",
placeholder="Contoh: Berapa jumlah data yang memiliki nilai Glucose di atas 150?",
lines=2
)
submit_button = gr.Button("Kirim")
clear_button = gr.Button("Bersihkan Chat")
# Handler functions
def handle_process_file(file, sess_id):
chatbot = ChatBot(sess_id)
result = chatbot.process_file(file)
return chatbot, [(None, result)]
process_button.click(
fn=handle_process_file,
inputs=[file_input, session_id],
outputs=[chatbot_state, chatbot_interface]
)
def user_message_submitted(message, history, chatbot, sess_id):
history = history + [(message, None)]
return history, "", chatbot, sess_id
def bot_response(history, chatbot, sess_id):
if chatbot is None:
chatbot = ChatBot(sess_id)
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
return chatbot, history
user_message = history[-1][0]
response = chatbot.chat(user_message, history[:-1])
history[-1] = (user_message, response)
return chatbot, history
submit_button.click(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
message_input.submit(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
def handle_clear_chat(chatbot):
if chatbot is not None:
chatbot.chat_history = []
return chatbot, []
clear_button.click(
fn=handle_clear_chat,
inputs=[chatbot_state],
outputs=[chatbot_state, chatbot_interface]
)
return interface
# Launch the interface
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)