CSVBot-Llama2 / app.py
hmrizal's picture
Update app.py
fdad3c6 verified
raw
history blame
13.8 kB
import gradio as gr
import os
import uuid
import threading
import pandas as pd
import numpy as np
from langchain.llms import CTransformers
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# Global model cache
MODEL_CACHE = {
"model": None,
"init_lock": threading.Lock()
}
# Create directories for user data
os.makedirs("user_data", exist_ok=True)
def initialize_model_once():
"""Initialize model once using CTransformers API"""
with MODEL_CACHE["init_lock"]:
if MODEL_CACHE["model"] is None:
# Load TinyLlama model
MODEL_CACHE["model"] = CTransformers(
model="TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
model_file="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
model_type="llama",
max_new_tokens=512,
temperature=0.1,
repetition_penalty=1.1,
context_length=2048
)
return MODEL_CACHE["model"]
class ChatBot:
def __init__(self, session_id):
self.session_id = session_id
self.csv_info = None
self.df = None
self.chat_history = []
self.user_dir = f"user_data/{session_id}"
os.makedirs(self.user_dir, exist_ok=True)
def process_file(self, file):
if file is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle file from Gradio
file_path = file.name if hasattr(file, 'name') else str(file)
file_name = os.path.basename(file_path)
# Load and save CSV directly with pandas
try:
self.df = pd.read_csv(file_path)
user_file_path = f"{self.user_dir}/uploaded.csv"
self.df.to_csv(user_file_path, index=False)
# Store CSV info
self.csv_info = {
"filename": file_name,
"rows": self.df.shape[0],
"columns": self.df.shape[1],
"column_names": self.df.columns.tolist(),
}
print(f"CSV verified: {self.df.shape[0]} rows, {len(self.df.columns)} columns")
except Exception as e:
return f"Error membaca CSV: {str(e)}"
# Create query translator
try:
llm = initialize_model_once()
query_template = """
Kamu adalah asisten data yang mengubah pertanyaan bahasa natural menjadi kode Python dengan Pandas.
Informasi tentang DataFrame:
- Nama kolom: {column_names}
- Jumlah baris: {num_rows}
- Sampel data:
{sample_data}
Pertanyaan pengguna: {question}
Buat kode Python menggunakan pandas untuk menjawab pertanyaan tersebut.
Berikan HANYA kode Python saja, tanpa penjelasan atau apapun.
Kode harus menggunakan variabel 'df' sebagai nama DataFrame.
Kode:
"""
self.query_chain = LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["column_names", "num_rows", "sample_data", "question"],
template=query_template
)
)
print("Query translator created successfully")
except Exception as e:
return f"Error creating query translator: {str(e)}"
# Add file info to chat history
file_info = f"CSV berhasil dimuat: {file_name} dengan {self.df.shape[0]} baris dan {len(self.df.columns)} kolom. Kolom: {', '.join(self.df.columns.tolist())}"
self.chat_history.append(("System", file_info))
return f"File CSV '{file_name}' berhasil diproses! Anda dapat mulai mengajukan pertanyaan tentang data."
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error pemrosesan file: {str(e)}"
def execute_query(self, code):
"""Safely execute pandas code"""
try:
# Create local context with the dataframe
local_vars = {"df": self.df, "pd": pd, "np": np}
# Execute code with timeout
exec(code, {"pd": pd, "np": np}, local_vars)
# Get result
if "result" in local_vars:
return local_vars["result"]
else:
# If no result variable, find the last variable created
last_var = None
for var_name, var_value in local_vars.items():
if var_name not in ["df", "pd", "np"] and var_name != "__builtins__":
last_var = var_value
if last_var is not None:
return last_var
else:
return self.df # Return the dataframe as default
except Exception as e:
raise Exception(f"Gagal menjalankan kode: {str(e)}")
def chat(self, message, history):
if self.df is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle metadata questions directly
message_lower = message.lower()
if "nama file" in message_lower:
return f"Nama file CSV adalah: {self.csv_info['filename']}"
elif "nama kolom" in message_lower:
return f"Kolom dalam CSV: {', '.join(self.csv_info['column_names'])}"
elif "jumlah baris" in message_lower or "berapa baris" in message_lower:
return f"Jumlah baris dalam CSV: {self.csv_info['rows']}"
# Handle pre-defined analysis questions
if "glucose di atas 150" in message_lower:
code = "result = len(df[df['Glucose'] > 150])"
else:
# Get sample data for context
sample_str = self.df.head(3).to_string()
# Translate question to pandas code using LLM
try:
code_response = self.query_chain.run(
column_names=str(self.csv_info["column_names"]),
num_rows=self.csv_info["rows"],
sample_data=sample_str,
question=message
)
# Clean the code
code = code_response.strip().replace("```python", "").replace("```", "").strip()
# Add result variable if not present
if not any(line.strip().startswith("result =") for line in code.split("\n")):
if code.startswith("df."):
code = "result = " + code
else:
code = "result = df." + code
except Exception as e:
# Fallback for common queries if LLM fails
if "rata-rata" in message_lower or "mean" in message_lower:
code = "result = df.describe()"
elif "jumlah" in message_lower or "count" in message_lower:
code = "result = df.count()"
elif "distribusi" in message_lower:
col = next((c for c in self.csv_info["column_names"] if c.lower() in message_lower), None)
if col:
code = f"result = df['{col}'].value_counts()"
else:
code = "result = df.describe()"
else:
return f"Maaf, saya tidak dapat memproses pertanyaan ini. Error: {str(e)}"
# Execute the code and get result
try:
print(f"Executing code: {code}")
result = self.execute_query(code)
# Format result based on its type
if isinstance(result, pd.DataFrame):
if len(result) > 5:
result_str = result.head(5).to_string() + f"\n\n[Total {len(result)} baris]"
else:
result_str = result.to_string()
elif isinstance(result, (pd.Series, np.ndarray)):
if len(result) > 10:
result_str = str(result[:10]) + f"\n\n[Total {len(result)} item]"
else:
result_str = str(result)
elif hasattr(result, "__len__") and not isinstance(result, (str, int, float)):
result_str = str(result)
if len(result) > 0:
result_str += f"\n\n[Total {len(result)} item]"
else:
result_str = str(result)
# Format response
response = f"Hasil analisis:\n\n{result_str}\n\nKode yang dijalankan:\n```python\n{code}\n```"
self.chat_history.append((message, response))
return response
except Exception as e:
return f"Error saat menganalisis data: {str(e)}\n\nKode yang dicoba:\n```python\n{code}\n```"
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error: {str(e)}"
# UI Code (tidak berubah dari sebelumnya)
def create_gradio_interface():
with gr.Blocks(title="CSV Data Analyzer") as interface:
session_id = gr.State(lambda: str(uuid.uuid4()))
chatbot_state = gr.State(lambda: None)
gr.HTML("<h1 style='text-align: center;'>CSV Data Analyzer</h1>")
gr.HTML("<h3 style='text-align: center;'>Ajukan pertanyaan tentang data CSV Anda</h3>")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV Anda",
file_types=[".csv"]
)
process_button = gr.Button("Proses CSV")
with gr.Accordion("Contoh Pertanyaan", open=False):
gr.Markdown("""
- "Berapa jumlah data yang memiliki nilai Glucose di atas 150?"
- "Hitung nilai rata-rata setiap kolom numerik"
- "Berapa banyak data untuk setiap kelompok dalam kolom Outcome?"
- "Berapa jumlah baris dalam dataset ini?"
""")
with gr.Column(scale=2):
chatbot_interface = gr.Chatbot(
label="Riwayat Chat",
height=400
)
message_input = gr.Textbox(
label="Ketik pertanyaan Anda",
placeholder="Contoh: Berapa jumlah data yang memiliki nilai Glucose di atas 150?",
lines=2
)
submit_button = gr.Button("Kirim")
clear_button = gr.Button("Bersihkan Chat")
# Handler functions
def handle_process_file(file, sess_id):
chatbot = ChatBot(sess_id)
result = chatbot.process_file(file)
return chatbot, [(None, result)]
process_button.click(
fn=handle_process_file,
inputs=[file_input, session_id],
outputs=[chatbot_state, chatbot_interface]
)
def user_message_submitted(message, history, chatbot, sess_id):
history = history + [(message, None)]
return history, "", chatbot, sess_id
def bot_response(history, chatbot, sess_id):
if chatbot is None:
chatbot = ChatBot(sess_id)
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
return chatbot, history
user_message = history[-1][0]
response = chatbot.chat(user_message, history[:-1])
history[-1] = (user_message, response)
return chatbot, history
submit_button.click(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
message_input.submit(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
def handle_clear_chat(chatbot):
if chatbot is not None:
chatbot.chat_history = []
return chatbot, []
clear_button.click(
fn=handle_clear_chat,
inputs=[chatbot_state],
outputs=[chatbot_state, chatbot_interface]
)
return interface
# Launch the interface
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)